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Abstract

Cyclodipeptides (CDPs) are distinct chemical scaffolds that show a wide range of bioactivities pertinent to 
medicine, agriculture, chemical catalysis, and material sciences. CDPs, also known as diketopiperazines (DKPs), 
are tiny naturally occurring peptides that have sparked interest due to their various bioactive features and pos-
sible applications in the food, pharmaceutical, and medical sectors. CDPs are produced by the intramolecular 
cyclization of two amino acids and can be found in a variety of environments, such as fungi, plants, animals, 
bacteria, and processed foods. CDPs are highly stable because of their solid structure and durability against enzy-
matic degradation, making them appropriate choices for medicinal and functional food applications. CDPs are 
frequently seen as undesirable byproducts in processed meals, especially those that include dairy, meat, and fer-
mented drinks; new research indicates that they may improve flavor and benefit human health. Bioactive sub-
stances having anti-inflammatory, antibacterial, antioxidant, and neuroprotective qualities have been recognized 
as CDPs. Certain CDPs, such cyclo(Phe-Pro), along with cyclo(Pro-Pro), have shown promise in controlling met-
abolic and cognitive functions in the body, while others, such as cyclo(His-Pro), have demonstrated anticancer 
activity by causing cancer cells to undergo apoptosis. In spite of widespread research, little is known about the 
precise health consequences and ideal levels of CDP intake from dietary sources. Considering this, the present 
review attempts to compile the most recent information on the occurrence, generation, and biological activity 
of CDPs. To completely comprehend CDPs’ bioactivity and their significance to human health, more research is 
required. Additionally, creative approaches for using these peptides for creating functional foods and preventing 
diseases should be investigated.

Keywords: antimicrobial activity; bioactivity; CDPs; food; pharmacological properties

mailto:cuichun@scut.edu.cn
mailto:lqzhao@szu.edu.cn


Italian Journal of  Food Science, 2025; 37 (1)� 107

Enzymatic synthesis and potential functional properties of  cyclodipeptides

Introduction

Cyclodipeptides (CDPs), also known as cyclic dipeptides 
or 2,5-diketopiperazines (2,5-DKPs), are the smallest 
cyclodipeptides in nature comprising two amino acids 
and have gained increasing attention for their bioactivity 
and flavor-enhancing properties (Wahyu and Sonja, 2023; 
Zhao et al., 2021a). CDPs are found in various sources, 
such as fungi, bacteria, plants, and animals. The funda-
mental structure of CDPs is present in several pharma-
ceuticals as well (Borthwick and Da Costa, 2017). CDPs 
are synthesized via the intra-molecular condensation of a 
pair of amino acids in linear peptides or proteins. CDPs 
possess advantageous characteristics, such as high capac-
ity for hydrogen bonding, structural rigidity, and resis-
tance to enzymatic degradation, rendering them highly 
desirable for various applications, including pharmaceu-
tical development and food science (Zhao et al., 2021a). 

In the food industry, CDPs are often considered 
unwanted byproducts of oligo- and poly-peptides in pro-
cessed foods and beverages (Otsuka et al., 2019). They 
can be formed during chemical and thermal process-
ing (Prasad, 1995), and their presence affects the taste 
and sensory properties of the final product. However, 
CDPs are also found in various fermented foods, such as 
dried bonito, cocoa, pu-erh tea, sake, coffee, and chicken 
extracts (Otsuka et al., 2019). In these foods, CDPs can 
contribute to the taste of food, being perceived as astrin-
gent, salty, grainy, metallic, or bitter (Borthwick and Da 
Costa, 2017; Yang et al., 2024). Owing to their unique 
flavor-enhancing properties, CDPs are widely used in the 
food and beverage industry as flavor enhancers. 

Apart from their flavor-enhancing properties, CDPs 
are found to have bioactivity and are linked to various 
human diseases and disorders, such as Parkinson’s dis-
ease, Huntington’s disease, and schizophrenia. Simple 
neuroactive CDPs from dietary sources are shown to 
play a role in behavior, cognition, and metabolism. 
However, the levels of CDPs in food and their potential 
health effects are not well understood (Borthwick and 
Da Costa, 2017; Malonis et al., 2020). Moreover, CDPs 
are investigated for their antimicrobial, antioxidant, 
and anti-inflammatory properties, which have potential 
applications in the treatment of various diseases (Zhao 
et al., 2021a). Despite their potential benefits, the levels 
of CDPs in food and their potential health effects are not 
well studied. Further research is needed to investigate the 
bioactivity of CDPs and their potential health effects. In 
addition to their presence in food, CDPs are synthesized 
by chemical or enzymatic means. They are hormone-like 
substances and are widely distributed in nature (Bellezza 
et al., 2019). Some of the most well-known CDPs include 
cyclo(Phe-Pro), cyclo(Pro-Pro), and cyclo(Phe-Leu) 
(Otsuka et al., 2019). 

Cyclopeptides are studied extensively for their poten-
tial applications in drug design and pharmaceuticals 
because of their unique structural properties and bio-
activity. For example, cyclo(Phe-Pro) has been found 
to inhibit the activity of enzymes that play a role in the 
formation of amyloid-beta peptides, which are impli-
cated in Alzheimer’s disease (Borthwick and Da Costa, 
2017). Additionally, it has been demonstrated that 
cyclo(Pro-Pro) possesses anti-inflammatory characteris-
tics, rendering it a viable contender (Zhao et al., 2021a). 
Overall, CDPs are a promising area of research because of 
their diverse bioactivity and their potential applications 
in various fields, such as food technology, drug design, 
and pharmaceuticals. Although they are often considered 
unwanted byproducts in processed foods, they are widely 
distributed in nature and can be found in various fer-
mented foods. Further research is needed to investigate 
the bioactivity of CDPs and their potential health effects, 
which could lead to the development of new drugs and 
therapies to combat various diseases.

Structure of Cyclodipeptides

The CDP molecules comprise two cis-amide bonds that 
exhibit two H-bond acceptors as well as two H-bond 
donor sites, which are crucial for their interaction with 
enzymes and receptors. The 2,5-DKPs ring (Figure 1) 
offers six possible positions for the addition of substit-
uents, and up to four positions that allow for control of 
stereochemistry. 

This leads to a wide range of structural diversity. The 
semirigid 2,5-DKPs present in CDP can exist in either a 
planar or a little puckering boat conformation, as illus-
trated in (Figure 2). The two forms exhibit only minor 
difference in energy, with a variance of a few kcal/
mol (Bojarska and Wolf, 2020; Milne and Kilian, 2010). 
Extensive research is conducted on the conformation 
of unsubstituted CDP, specifically cyclo(Gly-Gly). In 
1938, the crystal structure of cyclo(Gly-Gly) was initially 
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Figure 1.  2,5-diketopiperazine (2,5-DKP) ring structure 
(Borthwick et al., 2012).
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central rings exhibit a range of conformations, from pla-
nar to flattened-chair (Borthwick et al., 2012).

Cyclodipeptides Occurring in Food

Cyclodipeptides are small protein-like compounds pres-
ent in certain foods such as beer, roasted coffee, cocoa, 
and cheese (Brauns et al., 2004). They are present, espe-
cially as polypeptide breakdown products, in foods and 
beverages, and may influence their taste (Nilov et al., 
2018) (Table 1).

Meat

Research has shown that CDPs are formed if meat is sub-
jected to high temperatures and cooked for a prolonged 
period, which leads to the Maillard reaction. The Maillard 
reaction is a chemical process that takes place between 
reducing sugars and amino acids, leading to the forma-
tion of novel compounds and the characteristic browning 
of meat. Studies have identified various CDPs in different 
types of meat, including beef, fish tilapia, and chicken. In 
stewed and dry-aged beef, CDPs, such as cyclo(Leu-Pro), 
cyclo(Ile-Pro), cyclo(Pro-Pro), cyclo(Phe-Val), cyclo(Ala-
Pro), cyclo(Gly-Pro), cyclo(Met-Pro), cyclo(Gly-Leu), 
cyclo(Phe-Pro), cyclo(Phe-Val), and cyclo(Pro-Val), are 
found. The concentrations of these compounds in beef 
ranges from 2.0 ppm to 54.7 ppm (Chen et al., 2009; 
Khodorova et al., 2022). In chicken essence, CDPs, 
such as cyclo(Phe-Phe), cyclo(Pro-Ser), cyclo(Pro-Gly), 
cyclo(Pro-Thr), cyclo(Pro-Tyr), cyclo(Pro-Asn), and 
cyclo(Pro-Trp), are identified, with concentrations rang-
ing from 0.06 ppm to 3.55 ppm (Chen et al., 2004; Ni 
et al., 2021). Moreover, the Maillard reaction commod-
ities derived from the hydrolysate of warm-water fish 
tilapia are discovered to contain cyclo(Gly-Gly). This 
implies that the formation of CDPs is not limited to ter-
restrial animals but can also occur in aquatic animals. 
Additionally, cyclo(His-Pro) is an indigenous CDP that 
exhibits structural similarity to thyrotropin-releasing 
hormone (TRH). The compound in question was first 
identified in the brains of both animals and humans.  

resolved, revealing its planar configuration in solid-state 
(Core, 1993). The current body of research on vibra-
tional spectra analysis and density functional theory 
(DFT) calculations supports the notion that cyclo(Gly-
Gly) assumes a planar conformation in both solution and 
solid-state. A recent investigation utilizing microwave 
spectral data of cyclo(Gly-Gly) in its gaseous phase has 
demonstrated that the molecule, when isolated, assumes 
a boat conformation possessing C2 symmetry (Bettens 
et al., 2000). The minimal energy disparity between boat 
and planar conformations implies that the imposition 
of a planar configuration is achievable through external 
forces originating from the crystal or solution environ-
ment. A systematic quantum chemical study was con-
ducted on 20 symmetrical cis-disubstituted 2,5-DKP. 
The study revealed that the boat conformation was the 
lowest-energy structure in an environment that was not 
restricted by crystal forces. The majority of the crystal 
structures that are presently known comprise di-, tri-, 
and tetrasubstituted chemical compounds. Multiple 
investigations conducted in both solution and solid-state 
have demonstrated that the 2,5-DKP rings present in 
cis-disubstituted and trisubstituted compounds tend 
to adopt flattened-boat or twist-boat conformations 
(Figure  2). This behavior is particularly observed when 
the substituents are aryl methyl groups (Borthwick et al., 
2012). The adoption of a boat conformation within the 
solid-state is confirmed recently through X-ray struc-
tures of symmetrically substituted 2,5-DKP with ring 
geometries (Mendham et al., 2010a, 2010b).

The configuration of 2,5-DKP ring in CDP is significantly 
impacted by the substituents that are present in the ring. 
The avoidance of steric interaction between the side 
chains of substituted CDP is observed to exert a strong 
influence on the conformation of the six-membered ring. 
The conformation of the ring in CDP molecules bearing 
aromatic side chains is subjected to the influence of aro-
matic substituents, which have the propensity to overlap 
with 2,5-DKP ring. The conformational characteristics of 
2,5-DKP rings are influenced by the quantity and posi-
tioning of substitutes on the ring. In symmetric CDP, the 
central ring typically assumes a planar conformation. 
However, in symmetric trans-disubstituted CDP, the 
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Figure 2.  Configurations of cyclodipeptide (CDP) rings (adapted from Borthwick et al., 2012).
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Microorganisms

Researchers from a variety of institutions have isolated a 
wide variety of CDPs, or chemically defined products, that 
are manufactured by particular bacteria and yeast. These 
CDPs are shown to possess powerful therapeutic capabil-
ities. Lactic acid bacteria are well acknowledged for their 
ability to create a wide array of CDPs that may have posi-
tive effects on human health. Kwak et al. (2013) found that 
CDPs formed by bacteria from the fermented food kimchi 
in South Korea, specifically cyclo (Phe-Pro) and cyclo (Leu-
Pro), have powerful antiviral activities. It has been dis-
covered that the CDP cyclo(Phe-Pro), which was isolated 
from L. plantarum, P. alcaligenes, and P. fluorescens, pos-
sesses powerful antifungal and antibacterial actions (Stro, 
2002). Methionine-containing CDPs, namely, cyclo(Met-
Pro), cyclo(Gly-Met), cyclo(Met-Val), cyclo(Leu-Met), 
cyclo(Met-Met), cyclo(Ile-Met), and cyclo(Ala-Met), iden-
tified in hydrolyzed yeast provide foods characteristic fla-
vors, such as bitter, creamy, milky, and vegetal (Da Costa 
et al., 2010). The cyclo (His-Pro) in wasted brewer’s yeast 
hydrolysate has been proposed as a potential antioxidative 
and antidiabetic material for manufacturing functional 
foods. This suggests that the CDPs synthesized by micro-
organisms have the potential to be a valuable source of 
novel therapeutic agents and functional food components 
with potential health advantages (Jung et al., 2011).

Corn oil

Cyclodipeptides are the components of corn oil, and are 
produced from certain amino acids, specifically proline, 
leucine/isoleucine, and phenylalanine. These CDPs are 
not present in other edible oils, such as olive, soybean, 
sunflower, and linseed oils, hence may also serve as use-
ful markers for corn oil, as well as can be used to differ-
entiate it from other edible oils. The CDPs found in corn 
oil are believed to act as antioxidants, contributing to the 
higher oxidative stability of corn oil, compared to other 
oils with similar levels of unsaturation. This makes corn 
oil a desirable option for food processing and cooking 
(Alberdi-Cedeño et al., 2017). Specific CDPs identified in 
corn oil include cyclo (Phe-Val), cyclo(Leu/Ile-Phe), and 
cyclo(Pro-Phe). These CDPs are shown to have antioxi-
dant properties and may have potential health benefits, 
The discovery of CDPs in corn oil and their potential 
applications in the food industry and medicine provide 
promising avenues for future research and development 
(Alberdi-Cedeño et al., 2019).

Cocoa

Cyclodipeptides found in cocoa are accountable for the 
bitter taste of cocoa and play a significant role in shaping 

It has been postulated that this substance is involved in 
the regulation of various physiological processes, includ-
ing energy metabolism and food consumption (Minelli 
et al., 2008). 

Dairy

Cyclodipeptides are found in dairy products, such as 
whey protein powder, casein meal, and cheese. These 
are the byproducts of the cleavage of terminal peptides 
that are formed during dairy processing and have various 
biological effects (Münger et al., 2018). Whey protein 
powders contain four CDPs: cyclo(Pro-Thr), cyclo(A-
la-Ile), cyclo(Phe-Val), and cyclo(Leu-Val) that can cause 
a significant increase in CDP levels after consumption 
in human blood plasma (Stanstrup and Rasmussen, 
2014). Milk and fermented products of milk, including 
yogurt, contain a very prominent CDP, cyclo(His-Pro) 
(Tulipano, 2020). Cheese varieties that have undergone 
the ripening process, such as semi-hard, hard, white 
mold, blue-veined, a combination of white and blue 
mold, and washed-rind cheeses, exhibit elevated lev-
els of CDPs in comparison to unripened cheese, such 
as Mozzarella. Cheeses undergo a complex and pro-
longed ripening process that results in the formation 
and accumulation of CDPs. The types and concentra-
tions of CDPs can differ depending on the cheese type 
and duration of ripening. For example, Camembert 
cheese has the following 20 CDPs: cyclo(His-Pro), 
1.77 µg/g dry weight (dw), cyclo(Gly-Pro), 0.57 µg/g dw, 
cyclo(Thr-Pro), 0.71  µg/g dw, cyclo(Ala-Pro), 1.13  µg/g 
dw, cyclo(Pro-Pro), 0.49  µg/g dw, cyclo(Tyr-Pro), 
2.44  µg/g dw, cyclo(Val-Pro), 4.92 µg/g dw, cyclo(Leu-
Pro), 1.20  µg/g dw, cyclo(Phe-Pro), 6.00 µg/g dw, 
cyclo(Lys-Pro), 1.13, µg/g dw, cyclo(Asn-Pro), 0.44 µg/g 
dw, cyclo(Arg-Pro), 12.71 µg/g dw, cyclo(Asp-Pro), 0.20 
µg/g dw, cyclo(Gln-Pro), 2.12 µg/g dw, cyclo(Glu-Pro), 
2.22 g/g dw, cyclo(Met-Pro), 0.18 µg/g dw, cyclo(Ile-Pro), 
0.62  µg/g dw, cyclo(Gly-Leu), 0.05 µg/g dw, cyclo(Phe-
Ser), 0.08  µg/g dw, and cyclo(Asp-Phe), 0.05 µg/g dw, 
while the Mozerella cheese has only one CDP, that is, 
cyclo(Arg-Pro), 0.24 µg/g dw. The types and the concen-
tration of CDPs in Gouda cheese increased from 11 and 
5.18 µg/g dw if ripened for 30 days to 13 and 22.45 µg/g 
dw for the ripening period of 500 days, respectively. 
Literature demonstrates that the majority of CDPs in 
cheese varieties are generated from casein, the main pro-
tein present in milk (Xiao et al., 2021). This suggests that 
the cheese-making process plays an important role in 
the formation and accumulation of CDPs (Jo et al., 2018; 
Otsuka et al., 2021). While the presence of CDPs in dairy 
products is intriguing, more research is needed to fully 
understand their biological effects and to determine the 
optimal intake levels for achieving their potential health 
benefits (Hajirostamloo, 2010).
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cyclo(lIe-Pro), cyclo(Val-Pro), and cyclo(Leu-Pro). On 
the other hand, Takahashi et al. (2016) identified sev-
eral CDPs and chemicals related to amino acids that 
contribute to unique taste and flavor in sake. The most 
noticeable CDPs identified were as follows: cyclo (Met-
Pro), cyclo(Leu-Phe), cyclo(Phe-Met), and cyclo(Phe-
Met). Similarly, another study identified the following 
CDPs in bottled wines derived from different plant types: 
cyclo(Leu-Leu), cyclo(Val- Phe), cyclo(Leu-Pro), 
cyclo(Leu-Phe), and cyclo(Phe-Pro); cyclo(Leu-Pro), 
ranging from 0.1 mg/L to 1 mg/L, was noticed in every 
wine sample (Stamatelopoulou et al., 2018). 

In addition, CDPs possess biological activity and may 
contribute to the health benefits of microbially fer-
mented tea. More than 15 types of CDPs were discovered 
in Pu-erh tea (Table 1), and their concentrations ranged 
from 0.0017 to 0.11 ppm. Among the targeted CDPs, 
Cyclo(-Ala-Pro) was prominent (Yamamoto et al., 2016). 
Additional research is required to enhance comprehen-
sion of the biological functionality and prospective health 
advantages of CDPs present in these beverages.

Pharmacological Properties 

Cyclodipeptides exhibit remarkable biological activity, 
captivating the attention of researchers across various 
scientific disciplines. Understanding and harnessing the 
biological activity of CDPs holds great promise for the 
development of novel therapeutic interventions and drug 
discovery. 

Anticancer cyclodipeptides

Cancer has been a prominent cause of death in developed 
nations, leading to continuous efforts to identify novel 
therapies that can improve patient outcomes. In this 
regard, proteins and peptides, especially CDPs and their 
derivatives (isomers of CDPs), have received significant 
attention as potential anticancer agents (van der Merwe 
et al., 2008). CDPs, specifically those containing pro-
line, have demonstrated the ability to induce apoptosis, 
with cyclo(Pro-Phe) being the most potent in this regard. 
By activating caspase-3, these CDPs induce cell death 
in cancer cells and are being investigated as a possible 
cancer therapy (Semon, 2014). Various CDPs and their 
derivatives are tested for their cytotoxicity in diverse can-
cer cell lines. For instance, cyclo(Tyr-Cys) showed the 
best antitumor activity against Hela, MCF-7, and HT-29 
cells at a concentration of >100 μM, while cyclo(Phe-
Pro) inhibited cancer cell growth in MCF-7, Hela, and 
HT-29 cells at a concentration of 1–5 µM and initiated 
apoptosis in HT-29 cells. Cyclo(Pro-Arg) displayed anti-
tumor activity in Hela cells by an IC50 value of 50 μg/mL, 

its distinctive flavor profile. Over 34 different CDPs are 
identified (see Table 1) in cocoa beans after roasting, 
and their presence and concentration differ based on 
the factors such as variety of cocoa beans used, process-
ing method, and level of roasting (Andruszkiewicz et al., 
2019). Research has indicated that cocoa’s CDPs possess 
potential health benefits, such as anti-inflammatory and 
antioxidant properties, as well as positive impacts on 
cognitive ability and neurodegenerative illnesses. Recent 
studies have shown that the type of cocoa beans used can 
significantly impact the content of CDPs in chocolate, 
regardless of the level of roasting or processing method 
employed by small producers (André et al., 2022). 
Researchers have found that the content of CDPs in choc-
olate can be used as an indicator of cocoa beans and can 
be influenced by the factor such as bean genotype. Some 
specific CDPs, such as cyclo(Ile-Pro), cyclo(Ala-Leu), 
cyclo(Pro-Val), cyclo(Ala-Ile), and cyclo(Val-Leu), have 
been identified as contributing to the bitter flavor of 
cocoa, with cyclo(Pro-Val) being the most dominant 
CDP (McClure et al., 2021; Stark and Hofmann, 2005).

Roasted coffee

Cyclodipeptides have garnered significant attention 
because of their diverse range of biological activities, 
with their bitter flavor being particularly noteworthy for 
their role in defining the bitterness of coffee (Bikaki et al., 
2021). CDP derivatives originating from proline were 
identified in roasted coffee proteins and roasted coffee 
per se. Their presence in aqueous solutions at concen-
trations between 10 ppm to 50 ppm is associated with 
the manifestation of bitter taste (Ginz and Engelhardt, 
2001). The most common CDP found in coffee beans 
is cyclo(Ile-Pro), providing a characteristic aroma and 
flavor to roasted coffee beans. In addition to cyclo (Ile-
Pro), other CDPs found are cyclo(Phe-Ile), cyclo(Pro-
Phe), cyclo(Pro-Pro), cyclo(Pro-Gly), cyclo(Phe-Val), 
cyclo(Pro-Ala), cyclo(Phe-Leu), cyclo(Pro-Leu), and 
cyclo(Pro-Val) (Ginz and Engelhardt, 2000, 2001).

Beverages

The amount and types of CDPs present in beverages 
vary depending on the brewing or fermenting process 
used. For example Gautschi et al. (1997) discovered the 
following seven proline-based CDPs in beer: cyclo(Ile-
Pro), cyclo(Val-Pro), cyclo(Leu-Pro), cyclo(Pro-Pro), 
cyclo(Ala-Pro), cyclo(Met-Pro), and cyclo(Phe-Pro). 
A detection limit of 24 ppm is characterized as bitter, 
mouth-coating, drying, astringent, salty, metallic, and 
gritty in beer (Gautschi et al., 1997). Sakamura et al. 
(1978) discovered the following five CDPs in roasted 
malt-based black beer: cyclo(Phe-Pro), cyclo(Pro-Pro), 
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Table 1.  Cyclodipeptides (CDPs) in food sources.

Food CDPs References

Meat Beef Cyclo(Pro-Val), cyclo(Pro-Val), cyclo(Pro-Pro), cyclo(Pro-Pro, 
cyclo(Ile-Pro), cyclo(Ile-Pro), cyclo(Leu-Pro), cyclo(Leu-Pro), 
cyclo(Phe-Val), cyclo(Met-Pro), cyclo(Phe-Pro)

Chen et al., 2009; Goethals 
et al., 2020

Chicken Cyclo(Ala-Ser), cyclo(Phe-Pro), cyclo(Pro-Gly), cyclo(Pro-Leu), 
cyclo(Pro-Thr), cyclo(Pro-Tyr), cyclo(Pro-Val), and cyclo(Phe-Pro)

Chen et al., 2004; Ni et al., 
2021; Zhang et al., 2022; 
Zhou et al., 2019

Fish Cyclo(Ile-Tyr), cyclo(Lys-Trp), cyclo(Val-Tyr), and cyclo(Ile-Tyr), Ou et al., 2016

Microorganisms Lactic acid bacteria Cyclo(Phe-Pro), cyclo(Leu-Pro) Kwak et al., 2013

Sourdough and bread Cyclo(Leu-Pro), cyclo(Phe-Pro), cyclo(Leu-Pro), cyclo(LPhe-L-Pro Ryan et al., 2009

Yeast Cyclo(Gly-Met), cyclo(Ala-Met), cyclo(Met-Val), cyclo(Leu-Met),  
cyclo-(Ile-Met), cyclo(Met-Pro), cyclo(Met-Met), cyclo(Met-Phe)

Da Costa et al., 2010

Beverages Beer Cyclo(Ala-Pro), cyclo(Val-Pro), cyclo(IlePro), cyclo(Leu-Pro), 
cyclo(Met-Pro), cyclo(Phe-Pro), and cyclo(Pro-Pro)

Gautschi et al., 1997

Pureh tea extract Cyclo(Ser-Ser), cyclo(Asp-Asp), Cyclo(Gly-Gly), cyclo (Glu-Gly), 
cyclo(Ser-Tyr), cyclo(Asp-Phe), cyclo(Met-Met), cyclo(-Phe-Phe), 
cyclo(-Pro-Thr), cyclo(-Pro-Pro), cyclo(-Gly-Leu), cyclo(Val-Pro), 
cyclo(-Leu-Pro), cyclo(Phe-Pro), cyclo(-Leu-Trp), and cyclo(Leu-Leu)

Yamamoto et al., 2016

Sake Cyclo(Leu-Leu), cyclo(Met-Pro), cyclo-(Leu-Phe), and cyclo(Phe-Met) Takahashi et al., 2016)

Wines Cyclo(Leu-Leu), cyclo (Leu-Pro), cyclo(Phe-Pro), cyclo Leu-Phe), 
cyclo(Val-Phe), cyclo(Ala-Phe)

Stamatelopoulou et al., 
2018

Dairy Cheeses Cyclo(Gly-His), cyclo(Ala-His), cyclo(Ser-Ser), cyclo(Gly-Gly), 
cyclo(Glu-Gly), cyclo(Asp-Asp), cyclo(Ala-Gln), cyclo(His-Pro), 
cyclo(Lys-Pro), cyclo(Ala-Ala), cyclo(Asn-Pro), cyclo(Gly-Pro), 
cyclo(Arg-Pro), cyclo(Asp-Pro), cyclo(Thr-Pro), cyclo(Gln-Pro), 
cyclo(Ser-Tyr), cyclo(Ala-Pro), cyclo(Glu-Pro), cyclo(Cys-Pro), 
Cyclo(His-Phe), cyclo(Pro-Pro), cyclo(Phe-Ser), cyclo(Gly-Leu), 
cyclo(Tyr-Pro), cyclo(Val-Pro), cyclo(Gly-Phe), cyclo(Asp-Phe), 
cyclo(Met-Pro), cyclol(Gly-Trp), cyclot(Lie-Pro), cyclo(Leu-Pro), 
cyclo(Ser Pro), cyclo(Met-Melt), cyclo(Phe-Pro), cyclo (Leu-Trp)

Coelho et al., 2022; 
Khorshidian et al., 2022; 
Otsuka et al., 2021

Powdered milk Cyclo(Thr-Pro), cyclo(Gly-His), cyclo(Lie-Pro), cyclo(Val-Pro), 
cyclo(Leu-Pro)

Coelho et al., 2022

Corn distillers 
solubles

Cyclo(Pro-Gly), cyclo(Phe-Pro) Sharma et al., 2021

Corn oil Cyclo(Pro-Gly), cyclo(Pro-Ala), cyclo(Pro-Pro), cyclo(Pro-Val), 
cyclo(Pro-Glu), cyclo(Pro-Leu), cyclo(Pro-Phe), cyclo(Leu-Val), 
cyclo(Ile-Val), cyclo(Leu-Leu), cyclo(Leu-Phe), and cyclo(Phe-Gly)

Alberdi-Cedeño et al., 
2017, 2019

Cocoa Cyclo(Ala-Leu), cyclo(Ala-Phe), cyclo(Ala-Phe), cyclo(Ala-Pro), 
cyclo(Ala-Pro), cyclo(Glu-His), cyclo(Gly-Leu), cyclo(Gly-Phe), 
cyclo(His-Val), cyclo(Leu-Leu), cyclo(Leu-Phe), cyclo(Leu-Tyr), 
cyclo(Gly-Phe), cyclo(His-Val), cyclo(Phe-Ser) and cyclo(Phe-Tyr)

André et al., 2022; 
Andruszkiewicz et al., 2019; 
Ginz and Engelhardt, 2001; 
Stark and Hofmann, 2005

Roasted coffee 
beans

Cyclo(Pro-Gly), cyclo(Pro-Ala), cyclo(Phe-Val), and cyclo(Phe-Leu) Ginz and Engelhardt, 2000

Olives cyclo(Ala-Gly), cyclo-D-(Ala-Pro), cyclo-D-(AlaVal), cyclo(Pro-Val), 
cyclo(Ala-His), cyclo(Leu-Pro), cyclo(Phe-Pro), cyclo(Leu-Phe), 
cyclo(Phe-Phe), cyclo(His-Phe), cyclo(Leu-Trp), cyclo(Asp-Gly), 
cyclo(Asp-Asp), cyclo(Trp-Tyr), cyclo(Val-Val), cyclo(Gly-Leu), 
cyclo(Ser-Tyr), cyclo(Phe-Ser), and cyclo(Gly-Gly)

Bratakos et al., 2016

CDPs: cyclodipeptides.

and cyclo(Tyr-Phe) significantly inhibited the growth of 
A549 cells by inducing apoptotic cell death with DNA 
fragmentation. Some CDPs, such as cyclo(Trp-Trp) and 
cyclo(Phe-Pro), enhanced the differentiation of HT-29 
cells at unspecified concentrations (Zhao et al., 2021a). 

Cyclo(Pro-Tyr) has demonstrated the ability to treat liver 
cancer. Derivatives of cyclo(Pro-Tyr) are found to inhibit 
the growth of certain cancer cells, including HepG2 
cells, with an IC50 value of 140 µM (Karanam and 
Arumugam, 2000; Karanam et al., 2020). A study done 
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by KGK et  al.  (2021) indicates that cyclo(Leu-Pro) has 
the potential to mediate oxidative stress-induced cellular 
damage, which could help prevent breast malignant cells, 
MCF-7, and SF-268 cell lines. However, additional stud-
ies are required to better understand the effectiveness of 
cyclo(Leu-Pro) in treating cancer (Bennur et al., 2016). 
Another exciting discovery is that CDPs inhibit HCT-
116 cells, a form of colon cancer, with little to no negative 
effects on normal colon cells, suggesting that CDPs could 
be used to develop chemopreventive treatments for col-
orectal cancer. In terms of anticancer activity, cyclo(Val-
Pro) exhibited a comparable or even superior inhibitory 
effect on growth of cancer cells when compared to the 
commonly used anticancer drug doxorubicin. The IC50 
value of 117.70 μM for cyclo(Val-Pro) was lower than 
that of doxorubicin on Ht-29 cell line (Yusuf et al., 2020), 
which exhibited a significantly higher inhibitory effect 
on cancer cell proliferation, compared to the chemo-
therapeutic drug paclitaxel used for corectoral cell line 
(Balachandra et al., 2021). Overall, CDPs and their deriv-
atives hold great promise as cancer therapies and require 
further investigation (Tan et al., 2019).

Antibacterial cyclodipeptides

Cyclodipeptides are found to exhibit antimicrobial prop-
erties. Proline (Pro), arginine (Arg), and tryptophan (Trp) 
are some of the amino acids commonly found in CDPs 
that contribute to their antimicrobial effects (Table  2) 
(Zhao et al., 2021a). Studies have demonstrated that 
CDPs having proline residues, such as cyclo (Pro-Met), 
cyclo (Pro-Tyr), cyclo (Pro-Leu), and cyclo(Pro-Phe), 
have strong antibacterial potential against a wide variety 
of pathogenic bacteria, namely P. aeruginosa, S. aureus, B. 
subtilis, and E. coli, with minimum inhibitory concentra-
tion (MIC) ranging from 16 to 128 µg/mL. These CDPs 
are effective in both medical and agricultural settings, 
suggesting their potential for use as natural antimicro-
bial agents (Kumar et al., 2013). Intrestingly the peptides 
containing proline-based CDP prolyly hydroxyproline 
(Pro-Hyp) demomstrated antimicrobial and nutraceuti-
cal properties as compared to others (Kwak et al., 2018). 
CDP cyclo (Leu-Pro) is found to have significant antimi-
crobial activity against a wide range of bacterial patho-
gens, such as E. fergusonii (MIC = 230 µg/mL), S. enterica 
(MIC = 11  µg/mL), E.faecalis (MIC = 12 µg/mL), B. 
cereus (MIC = 16 µg/mL), S. aureus (MIC = 30 µg/mL). 
Therefore, CDP cyclo(Leu-Pro) has a great potential for 
being used as a natural antibacterial agent in medicinal 
and agri-food applications (Cui et al., 2024; Rasheed 
et al., 2024; Aziz et al., 2024; Gowrishankar et al., 2016; 
Saadouli et al., 2020). In addition, cyclo(Leu-Arg) and 
cyclo(Trp-Arg) have exhibited potent antibacterial activ-
ity, which further highlights the potential of CDPs as nat-
ural antimicrobial agents (Zhao et al., 2021a).

Antiviral cyclodipeptides

Cyclodipeptides have been evaluated for their known 
potential to inhibit viral replication of viruses, such as viral 
hemorrhagic septicemia virus (HSV) and human immuno-
deficiency virus (HIV) (Zhao et al., 2021a). The mechanism 
of their antiviral activity is not understood completely, but 
it is believed to inhibit specific stages of viral life cycle, 
such as attachment, entry, and replication (Winyakul et al., 
2022). Additionally, CDPs may interfere with the function-
ing of viral enzymes, such as proteases and reverse tran-
scriptases, which are necessary for viral replication (Zhao 
et al., 2021a). Cyclo (Pro-Val) and cyclo(Phe-Pro) are two 
examples of CDPs that have demonstrated antiviral activ-
ity against various viruses. Cyclo(Phe-Pro) was found to 
inhibit HIV replication by preventing the virus from enter-
ing human cells, while Cyclo(Pro-Val) exhibited antiviral 
activity against HSV, influenza virus, and HIV (Kwak et al., 
2018; Qader et al., 2021).

Antifungal cyclodipeptides

Chemical preservatives used to inhibit fungal growth in 
feed and food have raised concerns regarding potential 
adverse health effects. As a result, researchers are explor-
ing alternative methods to control fungal growth, and one 
promising method involves the use of CDPs produced by 
lactic acid bacteria. L. plantarum, a common type of lac-
tic acid bacteria found in fermented vegetables, has been 
found to produce CDPs with excellent antifungal prop-
erties. Studies have shown that specific CDPs (Table 2), 
such as cyclo(Phe-Pro) and cyclo(Val-Pro), demonstrate 
excellent antifungal action against G. boninense and C. 
albicans at a concentration of 20–60 µg/mL (Yuan et al., 
2020). Cyclo(Pro-Trp) is also found to aid in the eradi-
cation of microbial deterioration in feed and food at a 
concentration of approximately 16 µg/mL. (Kumar et al., 
2014). Cyclo(Pro-Ser) is found to have stronger mycocidal 
seed treatment action than synthetic toxic fungicides 
for rice at a concentration of 320 µg/mL (Poonia et al., 
2022). Furthermore, these CDPs are effective against agri-
culturally relevant fungi, such as F. oxysporum, R. solani, 
and P. expansum, which cause post-harvest deterioration 
of preserved fruits and vegetables (Kumar et al., 2013). 
For example, cyclo(Phe-Pro) showed great potential to 
stop the proliferation of rotting fungus in bakery goods, 
as it demonstrated the highest level of activity against P. 
expansum at a concentration of approximately 20 µg/mL 
(Kumar et al., 2013; Muhialdin et al., 2018).

Neuroprotective cyclodipeptides

Food-derived CDPs and intestinal yeast CDPs may 
help to avoid mental conditions such as schizophrenia 
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Table 2.  Antimicrobial activity of cyclodipeptides (CDPs).

CDP Microbial 
species

MIC value References

Cyclo(Pro-Met) S. aureus 2.81 × 10–4 Kumar  
et al., 2013E. coli 1.40 × 10–4

B. subtilis 2.81 × 10–4

P. aeruginosa 5.61 × 10–4

A. flavus 5.61 × 10–4

C. albicans 2.81 × 10–4

F. oxysporum 3.51 × 10–5

R. solani 7.02 × 10–5

Cyclo(Pro-Leu) B. subtilis 7.62 × 10–5 Kumar  
et al., 2013; 
Zhao et al., 
2021a

S. aureus 1.52 × 10–4

E. coli x 1.52 × 10–3

A. flavus 7.62 × 10–5

C albicans 3.05 × 10–4

F. oxysporum 7.62 × 10–5

 R. solani 3.81 × 10–5

P. expansum 1.90 × 10–5

V. anguillarum 6.19 × 10–7

Cyclo(Pro-Phe) B. subtilis 1.31 × 10–4 Kumar  
et al., 2013; 
Zhao et al., 
2021a

E. coli 1.31 × 10–4

S. aureus 6.56 × 10–5

P. expansum 1.64 × 10–5

V. anguillarum 1.23 × 10–7

R. solani 1.31 × 10–4

C. albicans 2.62 × 10–4

F. oxysporum 6.56 × 10–5

Cyclo(Pro-Tyr) B. subtilis 2.46 × 10–4 Kumar 
et al., 2013S. aureus 1.23 × 10–4

E. coli 1.23 × 10–4

P. expansum 1.54 × 10–5

R. solani 3.08 × 10–5

F. oxysporum 3.08 × 10–5

C. albicans 1.23 × 10–4

Cyclo(Pro-Ile) V. anguillarum 5.71 × 10–7 Zhao et al., 
2021a

Cyclo(Leu-His)[ V. anguillarum 2.80 × 10–7 Zhao et al., 
2021a

Cyclo(Pro-Val) V. anguillarum 5.61 × 10–7 Zhao et al., 
2021a

Cyclo(Leu-Arg) B. subtilis 2.97 × 10–5 Deepa  
et al., 2015S. typhi 2.38 × 10–4

S. aureus 5.95 × 10–5

K. pneumonia 9.29 × 10–4

S. epidermidis 5.95 × 10–5

P. aeruginosa 4.65 × 10–4

S. faecalis 1.19 × 10–4

Cyclo(Val-Leu) V. anguillarum 1.90 × 10–7 Zhao et al., 
2021a

(continues)

Table 2.  Continued.

CDP Microbial 
species

MIC value References

Cyclo(Trp-Arg) S. typhi 9.36 × 10–5 Deepa  
et al., 2015B. subtilis 1.17 × 10–5

K. pneumonia 5.85 × 10–6

S. aureus 1.46 × 10–6

P. mirabilis 1.87 × 10–4

S. epidermidis 2.34 × 10–5

P. vulgaris 1.17 × 10–5

S. faecalis 1.17 × 10–5

P. aeruginosa 1.46 × 10–6

E. faecium 5.85 × 10–6

Cyclo(Trp-Trp) A. baumannii 6.72 × 10–5 Lee et al., 
2010C. albicans 1.34 × 10–4

B. subtilis 1.34 × 10–4

A. niger 6.72 × 10–5

S. aureus 2.15 × 10–6

S. cerevisiae 6.72 × 10–5

MIC: minimum inhibitory concentration.

(Semon, 2014). CDPs, particularly cyclo(His-Pro) and 
cyclo(Pro-Phe), have demonstrated protective effects in 
various models of experimental nervous system lesions 
and could be a promising treatment option for condi-
tions such as schizophrenia and Alzheimer’s disease 
(Minelli et al., 2008). Cyclo(Pro-Phe), which is sourced 
from A. flavus fungus is found to decrease the produc-
tion of reactive oxygen species and prevent apoptosis 
triggered by hydrogen peroxide. In addition, it possesses 
the capacity to hinder neurodegeneration caused by oxi-
dative stress through the preservation of mitochondrial 
membrane potential and inhibition of apoptotic protein 
activation (Li et al., 2021; Misiura and Miltyk, 2019). 
Cyclo(His-Pro) is also investigated as a potential treat-
ment for Alzheimer’s disease because of its mild toxicity 
in cultured human whole blood cells. This implies that 
CDPs may have therapeutic potential in treating neuro-
logical disorders. However, more research is required to 
completely comprehend their mechanism of action and 
potential benefits (Turkez et al., 2020).

Antioxidant/Anti-inflammatory cyclodipeptides

Cyclodipeptides that contain the dihydroxyphenylalanine 
(DOPA) catechol moiety, such as cyclo(Tyr-Phe), are 
identified as having potent antioxidant activity because 
of their strong radical-scavenging abilities (Nishanth 
Kumar et al., 2014a; Zhao et al., 2021a). Other CDPs, 
such as cyclo(Gly-Pro), are discovered in awamori (tradi-
tional Okinawan rice wine; Zhao et al., 2021b) distillation 
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which cyclize at their N-termini, preferably at either 
acidic or basic conditions. During roasting of cocoa 
beans, short-chain peptide precursors undergo thermal 
degradation and form CDPs, which contribute to the bit-
ter taste of cocoa. 

The relative concentrations of CDPs were found to be 
correlated with their putative peptide precursors in 
unroasted cocoa bean samples (Andruszkiewicz et al., 
2019). The significance of hydrophobic amino acid res-
idue in bitterness manifestation of CDPs is indispens-
able. However, the overall hydrophobic nature of peptide 
does not exhibit a direct correlation with its bitterness. 
Peptide’s hydrophobic moiety provides a binding site for 
the bitter-tasting receptor. Specific CDPs have bitter taste 
determinant sites that depend on the chemical structure 
and disposition of the sites (Harken and Li, 2021). Several 
studies have explored the taste properties of CDPs, spe-
cifically their bitterness, and have identified key factors 
that influence their taste perception. In 1988, Ishibashi 
suggested that the presence and arrangement of two 
bitter taste determinant sites in CDPs were crucial for 
their bitterness and the intensity of bitterness was influ-
enced by the chemical structure and distance between 
these sites. Cyclo(Pro-Pro) was found to possess multiple 
determinant sites, but its bitterness was only perceived 
when these sites were arranged suitably. Figure  3 illus-
trates the model aimed for the mechanism of taste forma-
tion by CDP. Comparison of CDPs antioxidant activity to 
the existing foods showed that cyclo(His-Pro) displayed 
a higher oxygen radical absorbance capacity (Ishibashi et 
al., 1988).

Furthermore, Yotmanee et al. (2018) observed that four 
CDPs contributed to the bitter and metallic taste of rice 
wine, but their concentration was below the threshold 
required for taste perception, suggesting that threshold 
concentration plays a role in taste formation. Similarly, 
Yotmanee et al. (2018) identified cyclo(Pro-Leu) 

byproducts, and are shown to possess antioxidant activ-
ity (Sánchez et al., 2017). In particular, cyclo(Gly-Pro) 
has shown promise as a potential therapy for inflam-
mation-induced nociception and damage because of 
its potent antioxidant properties (Ferro et al., 2015). 
Cyclo(Val-Pro) has demonstrated anti-inflammatory 
properties and is currently being studied for its potential 
therapeutic use in treating renal injuries (Begum et  al., 
2020). Similarly, cyclo(His-Pro) is identified as having 
the ability to protect against oxidative stress, which sug-
gests its potential therapeutic use in treating diseases 
associated with oxidative stress. cyclo(His-Pro) displayed 
a higher radical scavenging activity compared to com-
monly consumed antioxidants, such as vitamin C and 
resveratrol (Minelli et al., 2009).

Sensory Properties of Cyclodipeptides

Peptides, including CDPs, have a taste that can range 
from sweet, bitter, umami, and sour to salty. The taste 
features of peptides are divided into three groups 
based on their acidic and hydrophobic residue content. 
Compounds containing acidic residues are character-
ized by a sour taste whereas those containing hydropho-
bic residues are associated with a bitter taste. Peptides 
exhibiting a more equilibrated constitution demonstrate 
minimal or absent gustatory perception (Temussi, 2012). 
The mechanism regarding the taste action of CDPs is not 
yet fully comprehended, but it is believed to involve their 
interaction with taste receptors located on the tongue. 
While some CDPs are reported to have a bitter taste, oth-
ers are found to enhance the flavor of food products. The 
taste properties of CDPs are heavily influenced by their 
structural characteristics. Factors such as the presence of 
specific functional groups or stereochemistry can impact 
the intensity of bitterness or the ability to enhance fla-
vors. In addition to interacting with bitter receptors, 
CDPs may also have interactions with other taste recep-
tors, such as sweet or umami receptors, which contribute 
to their overall taste perception. This suggests that CDPs 
have the potential to influence various aspects of taste 
perception. 

The presence of CDPs plays an important role in shaping 
the final flavor profile of both food and beverages. CDPs 
can contribute to astringency, saltiness, bitterness, and 
even metallic flavors in comestibles and potables. Further 
research is required to gain a comprehensive understand-
ing of the taste formation mechanism for CDPs and their 
interactions with different taste receptors in the mouth 
(Maehashi and Huang, 2009; Schmeda-Hirschmann 
et  al., 2020). Andruszkiewicz et.al. (2019) described in 
their study that CDPs responsible for the specific bitter 
taste of cocoa formed during roasting are degradation 
products of thermally processed peptides or proteins, 

CDP

Taste receptor

BU: binding unit 
(hydrophobic group)

SU: stimulating unit 
(hydrophobic or 
basic group)

Figure 3.  Scheme of binding of bitter peptide with bitter 
taste (adopted from Ishibashi et al., 2016).
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cyclo(Pro-Leu) might exhibit nephrotoxic effects, poten-
tially leading to kidney damage (Nishanth Kumar et al., 
2014b). Also, cyclo(His-Pro) isolated from microbial 
sources may demonstrate cytotoxic and genotoxic effects, 
potentially impacting cellular health and DNA stability 
(Minelli et al., 2008; Zhao et al., 2021a). Nonetheless, 
additional research is necessary to establish the relevance 
and significance of these findings in a broader context.

Preparation of Cyclodipeptides

Cyclodipeptides are organic compounds identified 
in a range of foods and beverages. These compounds 
are increasingly becoming more common in the food 
industry because of their prevalence in protein-rich 
processed foods. These are formed due to thermal reac-
tions that occur during the degradation of polypeptides. 
Specifically, these are produced when two amino acids 
are condensed together, forming a cyclic molecule that 
contains two carbonyl groups. This reaction occurs at 
high temperatures and can be accelerated by the pres-
ence of acids, bases, or metal ions (Borthwick and Da 
Costa, 2017). 

The CDPs are produced through various methods, 
including chemical synthesis using solid phases or reflux-
ing in a solution. However, these are synthesized natu-
rally as well by specialized biosynthetic enzymes known 

anhydride, a CDP with a bitter taste, in sake, indicating 
that CDPs below the threshold level may still contribute 
to the overall flavor of food and beverages. Finally, the 
degradation of glutathione during cooking results in the 
production of cyclo (Gly-Cys), which is found to enhance 
significantly the taste of cooked pork. This highlights the 
role of CDPs not only in bitterness but also in enhancing 
the overall flavor of food (Ueda et al., 2014; Zhou, 2016). 
Table 3 provides some CDPs and their specific taste at 
certain threshold concentrations. 

Health Risks Associated with CDP

Although many CDPs are considered safe for consump-
tion (Brauns et al., 2005), certain members of this group 
are associated with potential health risks. It is crucial to 
note that research in this field is still advancing, and fur-
ther investigations are required to comprehend the impli-
cations comprehensively. Presented below are examples 
of health risks associated with specific CDPs:

Cyclo(Pro-Tyr) is identified in diverse foods, including 
fermented products. Some studies have indicated that it 
may possess immunosuppressive properties, potentially 
affecting the immune system’s ability to respond to infec-
tions or diseases (Novak et al., 2019). Cyclo(Pro-Leu) is 
another CDP found in various foods, particularly in fer-
mented products. Animal studies have suggested that 

Table 3.  Cyclodipeptides (CDPs) and their characteristic flavor at certain concentrations.

CDPs Taste Concentration (ppm) References

Cyclo(Leu-Met) Weak, vegetal, metallic, and creamy 200 Da Costa et al., 2010

Cyclo(Ala-Met) Milky, creamy, and cheesy 1,000 Da Costa et al., 2010

Cyclo(Phe-Pro) Savory, fishy, bitter, and meaty 200 Chen et al., 2009

Cyclo(Leu-Met) Weak taste 100 Da Costa et al., 2010

Cyclo(Ala-Met) Milky and creamy 400 Da Costa et al., 2010

Cyclo(Leu-Pro) Glue and pineapple 10 Chen et al., 2009

Cyclo(Met-Val) Metallic, vegetative, and milky 50 Da Costa et al., 2010

Cyclo(Gly-Leu) Isopropanol, asparagus, and dirty 1,000 Chen et al., 2009

Cyclo(Ala-Met) Creamy and milky 200 Da Costa et al., 2010

Cyclo(Pro-Val) Mouthfeel 200 Chen et al., 2009

Cyclo(Met-Phe) Creamy, vegetative, and milky 20 Da Costa et al., 2010

Cyclo(Gly-Met) Rotten, bitter, and stinky 1,000 Da Costa et al., 2010

Cyclo(Pro-Pro) Mettalic, green, and brothy 1,000 Chen et al., 2009

Cyclo(Ile-Met) Creamy, celery, and vegetable 100 Da Costa et al., 2010

Cyclo(Ile-Pro) Potato and bitter 1,000 Chen et al., 2009

Cyclo-(Met-Pro) Bitter, chalky 50 Da Costa et al., 2010

Cyclo(Ala-Pro) Beefy and bitter 400 Chen et al., 2009

Cyclo(Phe-Val) Band-aid, sweating, formaldehyde, and phenolic 100 Chen et al., 2009

CDPs: Cyclodipeptides
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Aspartame, chemically known as N-L-α-Asp-L-Phe-
1-methyl ester, is a synthetic sweetening agent widely 
utilized in various food items. Nonetheless, upon expo-
sure to elevated temperatures or extreme pH condi-
tions during food preparation, it has the potential to 
decompose into diverse degradation byproducts. One of 
these degradation products is the CDP cyclo (Asp-Phe). 
Moreover, it has been found that after being stored in 
carbonated beverages for 6 months, approximately 25% 
of the initial amount of aspartame was converted into 
a CDP degradation product. This conversion may have 
implications on the safety and quality of food products 
containing aspartame as well as on the interpretation 
of analytical results of aspartame content in food and 
beverage samples The compound cyclo (Asp-Phe) is 
recognized for its bitter flavor, which stands in contrast 
to the saccharine taste of aspartame. However, limited 
research is conducted on the effects of this compound 
in humans. A one-day exposure study found that it was 
well-tolerated without any adverse effects. Nonetheless, 
the safety of prolonged or repeated exposure to this com-
pound is yet to be understood completely. On the other 
hand, in a study conducted on mice, administering a 
large dosage of aspartame, concerns were raised about 
the potential health risks associated with its consump-
tion, particularly its alleged link to brain tumors (Geha 
et al., 1993; Hiroyuki, 1981; Ishii et al., 1981; Mallikarjun 
and Sieburth, 2015).

Nonenzymatic synthesis

Nonenzymatic cyclization of peptides and proteins 
occurs spontaneously through the formation of CDPs, 
such as cyclo(His-Pro), which is identified in mamma-
lian central nervous system (Yuan et al., 2020). CDPs may 
develop due to nonenzymatic dehydration and conden-
sation of two N-terminal amino acid residues of linear 
proteins or peptides during storing or food sterilization. 
These processes result in the formation of various CDPs 
having different physiological effects on the human body 
(Otsuka et al., 2019). Tripeptides can also form CDPs 
through degradation (Rizzi, 1989). The reactivity of glu-
tathione (GSH) may be related to its long peptide chain 
length and/or the formation of CDPs (Lu, 2006). When 
GSH undergoes thermal degradation, it degrades to half 
its amount and forms pyroglutamic acid (PCA) and cyclo 
(Cys-Gly). Cyclo(Cys-Gly) may be formed from GSH 
through 5-oxo proline or PCA and then react to form 
cyclo(Cys-Gly) during reaction (Ueda et al., 2014).

Liquid-phase synthesis

Liquid-phase synthesis of CDPs involves the cycliza-
tion of linear dipeptides in solution. This method is 

as CDP synthases (CDPSs) and non-ribosomal peptide 
synthetases (NRPSs) (Bellezza et al., 2019; Gang et al., 
2018).

Formation cyclodipeptides in foods

In 1989, Rizzi published a paper detailing their exper-
imental work on the formation of CDPs in foods. They 
found that the formation of these compounds was depen-
dent on temperature and acidity, and they conducted 
several experiments to support this hypothesis.

One of the conducted experiments entailed subjecting 
equimolar quantities of amino acids to heat, which did 
not yield the formation of CDPs. However, CDPs were 
generated upon subjecting acyclic dipeptides to acidic 
conditions. Furthermore, Rizzi noted that the application 
of heat to a tripeptide, specifically Ala-Leu-Gly, resulted 
in the production of cyclo(Ala-Leu), a distinct CDP. The 
findings suggest that the existence of specific amino acid 
sequence played a crucial role in the development of 
CDPs (Rizzi, 1989).

It is noteworthy that a considerable number of CDPs 
are generated as a secondary outcome of the Maillard 
reaction, a widely recognized origin of flavor and fra-
grance constituents in manufactured food products. 
The Maillard reaction occurs between reducing sugars 
and amino acids, and it is favored by high temperatures 
and low pH. The formation of CDPs as a byproduct of 
this reaction contributes to the overall flavor and aroma 
profile of processed foods. Nonenzymatic browning of 
food is attributed to this reaction, which is subjected to 
the influence of a type of amino acid/peptide and sugar/
carbohydrate employed. Under alkaline conditions, the 
reaction is accelerated by the increased nucleophilicity of 
amino groups. The Maillard reaction is important in the 
food industry for creating unique flavor profiles in vari-
ous products (Ho, 1996).

Recent research has indicated that the quantity of CDP 
generated through the reaction between peptides and 
reducing sugars is similar to the amount produced 
through the thermal generation of CDPs from peptides 
in the absence of other reactive species. In other words, 
the formation of CDPs does not appear to be significantly 
affected by the presence of reducing sugars. This suggests 
that the formation of CDPs during the Maillard reaction 
may be primarily driven by the thermal degradation of 
peptides, rather than the reaction with reducing sugars. 
However, it should be noted that the type of peptide and 
reducing sugar used still impacts the specific CDPs pro-
duced, as the Maillard reaction can generate a range of 
complex flavor compounds depending on the specific 
reactants involved (Jakas and Horvat, 2003).
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leading to the cyclization of dipeptide and the forma-
tion of intended CDP (Balachandra et al., 2021). Figure 
5 shows the schematic mechanism of CDP production by 
solid support phase method by using different conditions 
and reagents (Sharafeldin, 2022). This method has several 
advantages over liquid-phase synthesis, such as improved 
yield and purity, and the ability to generate diverse librar-
ies of CDPs in a short time frame (Borthwick et al., 
2012). One of the significant advantages of solid-phase 
synthesis is its efficiency in generating arrays of CDPs 
for screening purposes. By using solid-phase synthesis, 
researchers can quickly generate large numbers of CDPs 
for screening, which can be useful for drug discovery or 
other applications instead of using the spot method for 
screening. However, solid-phase synthesis has some lim-
itations. Although it is an efficient method for small-scale 
production, it is expensive and challenging to scale up to 
larger quantities. In addition, the solid-phase synthesis 
of CDPs requires specialized equipment and expertise, 
which could be a barrier for some researchers (Scarel and 
Marchesan, 2021).

Cyclization of dipeptides into CDP

Microwave-assisted cyclization

Microwave-assisted cyclization in water is a promising 
method for quick and efficient synthesizing of CDPs. 
This method has several advantages, such as high yield 
and simplicity in workup procedures, making it a greener 
alternative to traditional synthesis methods that use 
petroleum-derived solvents and require multiple steps 
(Tullberg et al., 2006). This method is not limited to 
deprotection of the tert-butyloxycarbonyl (Boc) group 
but can also be used for N-Boc deprotection and cycliza-
tion in a single step for methyl esters and C-terminal 
tert-butyl (Pérez-Picaso et al., 2009). The current inves-
tigations  report the successful synthesis of hydrophobic 

advantageous as it does not require solid support and 
the process exhibits favorable scalability characteristics, 
enabling efficient upscaling for mass production. The 
process of synthesis entails the creation of a linear dipep-
tide through the coupling of two amino acids via the 
conventional peptide coupling reaction. Subsequently, 
the linear dipeptide undergoes cyclization employing 
a cyclization agent or catalyst in an appropriate solvent 
(Wong et al., 2020). The cyclization of dipeptide esters 
is a frequently utilized method for obtaining a diverse 
array of symmetrical, unsymmetrical, and functional-
ized CDPs. The present methodology commences with 
the conjugation of two amino acids that are orthogonally 
protected, utilizing the conventional peptide coupling 
reaction, thereby resulting in the formation of a linear 
dipeptide. After the removal of amine-protecting group 
(N-PG), the dipeptide is cyclized under basic pH or in a 
buffer. The process of cyclization is conducted through 
thermal means, typically involving the refluxing of reac-
tants in high-boiling solvents, such as toluene and xylene, 
for 24 h (Bellezza et al., 2019).

The methodology involves the utilization of bromoester 
1 as a starting material, which undergoes treatment with 
hydrazine to yield cyclic hydrazide 2. Subsequently, a 
metal reductive cleavage yields an intermediate that 
undergoes spontaneous cyclization, ultimately resulting 
in the formation of CDP 3 cyclo (L-Pro-L-Ala) as shown 
in Figure 4 (Ortiz and Sansinenea, 2017).

Solid-phase synthesis

Solid-phase synthesis is a well-established method for 
synthesizing CDPs with a solid support. The methodology 
entails the covalent attachment of the C-terminus of a 
linear dipeptide to resin through an ester linkage. Upon 
immobilization of a linear dipeptide onto the solid aid, 
the N-protecting group is subsequently eliminated, 
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Figure 4.  Liquid-phase preparation of cyclo(Pro-Ala), where i (toluene) and ii (xylene) are reagents (Ortiz and Sansinenea, 
2017).
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Figure 5.  Schematic diagram of solid phase (Sharafeldin, 2022).

CDPs lacking a methyl ester moiety at the C-terminus, 
with high-to-quantitative yield, utilizing microwave-as-
sisted cyclization in an aqueous medium (Figure 6). The 
present technique involves the retention of any unreacted 
dipeptide within the solution whereas the hydropho-
bic CDPs undergo precipitation as white solids, thereby 
obviating the requirement of workup protocols (Kurbasic 
et al., 2019; Thaqi et al., 2008). The utilization of micro-
wave-assisted cyclization in an aqueous medium is a 
highly encouraging and environment-friendly approach 
for producing CDPs, resulting in substantial yields and 
requiring minimal workup procedures.

Dipeptide cyclization is a commonly used strategy for 
the synthesis of CDPs, which are biologically important 
molecules with numerous therapeutic applications. This 
method involves the cyclization of a dipeptide, which is 
a molecule composed of two amino acids linked together 
by a peptide bond. To perform dipeptide cyclization, 
a C-terminally protected dipeptide is typically used. 
The C-terminal protection is often achieved using a 
methyl ester group. The presence of this group allows 

the N-terminal amine to act as a nucleophile during 
the cyclization process, while the methoxy functionality 
serves as the leaving group.

The process under consideration is an aminolysis reac-
tion, wherein the carbonyl carbon of the C-terminal 
methyl ester group is attacked by N-terminal amine. 
The aforementioned process culminates in the estab-
lishment of a cyclic amide linkage, thereby giving rise to 
the formation of a CDP. In certain instances, it may be 
necessary to deprotect N-terminal amine before com-
mencing of the reaction. One possible approach involves 
the concomitant deprotection of N-terminal amine and 
cyclization, which is achieved in a single reaction vessel. 
The reaction can be performed with various solvents, 
including organic solvents, such as dimethylsulfoxide 
(DMSO) and water (Yin et al., 2021). The choice of a sol-
vent influences the rate and yield of reaction. An amino-
lytic reaction can lead to the spontaneous cyclization of 
dipeptides that possess a methoxy group at C-terminus 
when they are present in an aqueous environment 
(Pappas et al., 2020).
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Figure 6.  Microwave-assisted cyclization (Kurbasic et al., 2019; Thaqi et al., 2008).
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Solid-state cyclization

Powder samples are subjected to heat treatment to syn-
thesize CDPs in a solid-state (Safiullina et al., 2020; 
Ziganshin et al., 2017). Determination of a suitable reac-
tion temperature is contingent upon peptide sequence, 
whereby the minimum reaction temperature is subjected 
to variation based on the steric hindrance of amino 
acid side chain. For example, Gly-Gly requires a higher 
reaction temperature of 230°C, while Phe-Phe requires 
a lower temperature of either 147°C (Ziganshina et al., 
2019) or 125°C (Pérez-mellor et al., 2020), indicating an 
association between the nature of side chain and reaction 
temperature.

The process of cyclization necessitates molecular mobil-
ity, which is contingent upon the characteristics of side 
chains present in the solid-state. The melting points of 
Gly-Gly and Phe-Phe are reported to be 262–264°C and 
288–290°C, respectively. These values suggest that the 
reaction takes place in the solid-state and presumably 
over the glass transition temperature (Tg). The glass tran-
sition temperature is influenced by the preparation of 
sample during the manufacturing process. It is defined 
as the temperature at which a material undergoes a 
transition from a rigid and glassy state to a more pliable 
and malleable state. Following the process of synthesis, 
CDP molecules undergo reorganization within the solid 
framework, as the rotation and translations become fea-
sible, thereby deviating from their initial random confor-
mations. The solid-state manufacturing of CDPs presents 
a straightforward and efficient approach for their pro-
duction, exhibiting prospective uses in the fields of mate-
rials science, pharmaceutical research, and biomaterials 
development based on peptides (Ziganshina et al., 2019).

Vapor-deposited cyclization

The research conducted by Adler-Abramovich et al. 
(2009) involved subjecting diphenylalanine (Phe-Phe) to 
a temperature of 220°C and subsequently evaporating it 
within a vacuum chamber. Upon encountering a surface 

with a lower temperature of 80°C, the dipeptides that had 
undergone evaporation underwent a process of cycliza-
tion, ultimately resulting in the formation of nanotubes. 
The facilitation of nanotube formation was attributed to 
the stacking interactions that occurred between the aro-
matic rings of Phe-Phe side chains. The self-assembly of 
Phe-Phe molecules facilitated the intermolecular recog-
nition and templating of cyclization to form CDPs. The 
self-assembly process was initiated by the intermolec-
ular inter-CDPs actions between diphenylalanine mol-
ecules. The synthesis of CDPs and the growth of their 
self-assembled nanostructures were facilitated by the 
intermolecular interactions between the aromatic rings 
of side chains. The vapor deposition process used in this 
study allowed for the controlled deposition of Phe-Phe 
onto a surface, which led to the formation of nanotubes. 
The process of vapor deposition provides a way to control 
deposition rate and temperature of molecules, which in 
turn allows for the control of growth and the morphology 
of self-assembled structures (Adler-Abramovich et al., 
2009).

Enzymatic synthesis

Enzymatic pathways that produce natural compounds 
containing CDPs are classified into two types: non-
ribosomal peptide synthetases and CDP synthases (Wang 
et al., 2018; Yuan et al., 2020).

Cyclodipeptide synthases (CDPSs)

Cyclodipeptide synthases are a type of enzymes found 
mainly in bacteria that catalyze the formation of CDPs 
from aminoacyl-tRNAs. CDPSs are characterized by their 
modest size, typically composed of 200–300 amino acids. 
These enzymes have the ability to commandeer activated 
aminoacyl-tRNAs from ribosomal machinery, which they 
utilize to catalyze the synthesis of CDPs. This process 
allows for the direct link between primary and secondary 
metabolism in bacteria (Figure 7; Harken and Li, 2021; 
Yao et al., 2018). In 2002, the AlbC protein expressed 
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building blocks into a CDP molecule (Rüschenbaum et al., 
2022). NRPSs involve the incorporation of building blocks 
into a growing chain through catalytic domains (Figure 8). 
Adenylation domains (A) for recognition and activation 
of substrates, thiolation domains (T) for transfer, con-
densation domains (C) for elongation, and thioesterase 
domains (TE) for release are present in each NRPS mod-
ule (Adrover-Castellano et al., 2021). The relevant build-
ing block is selectively activated by adenylation domains 
and transferred to a nearby thiolation domain (Chu et 
al., 2019; Gao et al., 2012). Fungal NRPSs that make 
CDPs feature adenylation domains that directly stimu-
late -hydroxy acids in addition to the normal substrate 
of adenylation domains, which are amino acids (Camus 
et al., 2022). In a successful experiment done by Qi et al. 
(2022), the criC gene from E. Cristatum NWAFU-1 was 
expressed in A. oryzae using NRPSs to produce efficiently 
CDP compounds. This indicates that the A. oryzae heter-
ologous expression system is an effective method for the 
biosynthesis of fungal CDPs (Qi et al., 2022).

Limitations and Future Recommendations

This review provided detailed insights into CDPs and 
their different pharmacological properties and uses in 
various fields on the basis of latest scientific and patent 
literature available. With the increasing number of stud-
ies being conducted globally, the generation of multiple 
CDPs platforms is expected with a vast range of biomed-
ical applications. Generally, CDPs’ molecular framework 
offers a wide structural diversity and functional utility in 
both biomedicine and pharmaceutical sectors, as a huge 
scope exists to explain structure and functional proper-
ties in the field of medicinal chemistry and functional 
biomaterials. In spite of diverse and substantial progress 
in the field of CDPs, it is relatively at the emerging stage 
and further research is needed to exploit its widespread 
beneficial properties.

by the albC gene in the genome of Streptomyces noursei 
was discovered to catalyze the production of CDPs by a 
non-ribosomal peptide pathway, which was the first time 
the CDPS pathway was proposed (Huan et al., 2020). 
The biosynthesis of CDPs involves the use of additional 
enzymes, such as CDP oxidases, S-adenosyl-methionine-
dependent O-methyltransferases, and S-adenosyl-
methionine-dependent N-methyltransferases, to further 
modify CDPs (Bennur et al., 2016). The dehydrogenation 
of CDPs to introduce C-C double bonds is accomplished 
via catalysis mediated by oxidases whereas the cataly-
sis of N-alkylation is facilitated by methyltransferases 
(Scarel and Marchesan, 2021).

Only a few CDPS-dependent biosynthetic pathways have 
been identified so far. These are the biosynthetic routes 
that lead to antibiotics albonoursin and mycocyclosin, as 
well as siderochrome pulcherrimin, the nocazine family, 
and, lastly, methylated ditryptophan CDPs (Giessen and 
Marahiel, 2014).

Non-ribosomal peptide synthetases (NRPSs)

Non-ribosomal peptide synthetases are the enzymes with 
a modular structure and are involved in the biosynthe-
sis of non-ribosomal peptides, which have a huge array 
of applications in various fields (Camus et al., 2022). 
NRPSs are in charge of the biosynthesis of a wide array 
of naturally occurring compounds having medicinal use 
(Pourmasoumi et al., 2022). These enzymes are pres-
ent in all three domains of life, but they are particularly 
prevalent in bacteria (Abbood et al., 2022). CDPs are also 
biosynthesized by NRPSs and can be used as pharma-
ceuticals, food additives, and agrochemicals (Martínez-
Núñez and López, 2016). NRPSs are the enzymes that 
are responsible for the assembly of DKPs in a multimod-
ular manner. The modular structure of NRPSs enables 
the stepwise assembly of amino acid or amino acid-like 
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Figure 7.  General mechanism of CDP synthesis by cyclodipeptide synthase (CDPS) enzymes (Harken and Li, 2021; Yao et al., 
2018).
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Figure 8.  Domains of non-ribosomal peptide synthetases (NRPSs) (Chu et al., 2019; Gao et al., 2012).

Conclusions

This review discusses many bioactivities and self-
assembly features of CDPs and their derivatives, with 
a focus on their possible applications in biomedicine 
and the food sector. CDPs have a variety of bioactivi-
ties, such as neuroprotective, antibacterial, and antiox-
idant properties, making them ideal for functional food 
applications. Their self-assembly properties allow for the 
development of supramolecular structures appropriate 
for medication administration and innovative food com-
positions. Despite their promise, limitations are there in 
turning CDP features into practical applications. Future 
studies must focus on optimising enzymatic synthesis 
to increase yield and efficiency as well as comprehen-
sively characterizing CDP bioactivities and mechanisms 
of action. Identifying particular CDPs with strong anti-
bacterial activity toward foodborne pathogens is criti-
cal, as is assessing their efficacy as naturally occurring 
preservatives in various food systems. Furthermore, 
studying the ability of CDPs to suppress biofilm devel-
opment in the processing of food items can improve 
food safety. To achieve regulatory compliance, human 
food safety assessments, such as toxicity and allergenic-
ity tests, must be conducted. The sustainability of CDP 
manufacturing deserves more exploration, with a focus 
on environment-friendly processes and the application 
of agricultural leftovers. To assist market introduction, 
considerable study into formulation development for 
enhanced bioavailability stability and efficacy is required. 

By solving these difficulties, CDPs can be used to create 
creative and sustainable food items that meet consumer 
health and safety standards.
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