The behavior of apricot kernel oil body and proteins during in vitro gastric and intestinal digestion

Main Article Content

Aslı Kancabas Kilinc
Sibel Karakaya

Keywords

fatty acids, oil body, protein hydrolysis, vegetable milk, vegetable protein, waste by-products

Abstract

In this study, an apricot kernel milk suspension was prepared, for which Hacıhaliloğlu-type raw and roasted apricot kernels were used. Protein, total lipid, and ash contents of apricot kernels and apricot kernel milk were determined. Palmitic acid, oleic acid, and linoleic acid were considered as major fatty acids according to gas chromatography. During in vitro gastrointestinal digestion, the proteins of raw and roasted apricot kernel milk were hydrolyzed and pepsin-resistant proteins were determined. No difference was recorded between the pancreatic lipase penetration in the oil–water interface of oil bodies of both milk types.

Abstract 1272 | PDF Downloads 781 HTML Downloads 423 XML Downloads 464

References

Abdullah, W. and Zhang H. 2020. Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends Food Sci Technol. 106:322–332. 10.1016/j.tifs.2020.10.029

Al Juhaimi F., Özcan M.M., Ghafoor K., and Babiker E.E. 2018. The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils. Food Chem. 243:414–419. 10.1016/j.foodchem.2017.09.100

Alpaslan M. and Hayta M. 2006. Apricot kernel: physical and chemical properties. J Am Oil Chem Soc. 83(5):469–471. 10.1007/s11746-006-1228-5

Barre A., Simplicien M., Cassan G., Benoist H., and Rougé P. 2018. Oil bodies (oleosomes): occurrence, structure, allergenicity. Rev Fr Allergol. 58:574–580. 10.1016/j.reval.2018.10.005

Beisson F., Ferté N., Voultoury R., and Arondel V. 2001. Large scale purification of an almond oleosin using an organic solvent procedure. Plant Physiol Biochem. 39(7–8):623–630. 10.1016/S0981-9428(01)01275-X

Bligh E.G. and Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37(8): 911–917. 10.1139/o59-099

Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254. 10.1016/0003-2697(76)90527-3

Brodkorb A., Egger L., Alminger M., Alvito P., Assunção R., Ballance S., Bohn T., Bourlieu-Lacanal C., Boutrou R., Carrière F., Clemente A., Corredig M., Dupont D., Dufour C., Edwards C., Golding M., Karakaya S., Kirkhus B., Le Feunteun S., Lesmes U., Macierzanka A., Mackie A.R., Martins C., Marze S., McClements D.J., Ménard O., Minekus M., Portmann R., Santos C.N., Souchon I., Singh R.P., Vegarud G.E., Wickham M.S.J., Weitschies W., and Recio I. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc. 14(4):991–1014. 10.1038/s41596-018-0119-1

Çelebi N. 2009. Emülsiyonlar. In“Modern Farmasötik Teknoloji,” F. Acartürk, İ. Ağabeyoğlu, N. Çelebi, T. Değim, Z. Değim, T. Doğanay, S. Takka, and F. Tırnaksız (Eds.), p. 277. Türk Eczacılar Birliği Eczacılık Akademisi Yayını, Ankara, Turkey.

Coman V., Teleky B.E., Mitrea L., Martău G.A., Szabo K., Calinoiu L.F., and Vodnar D.C. 2019. Bioactive potential of fruit and vegetable wastes. Adv Food Nutr Res. 91:157–225. 10.1016/bs.afnr.2019.07.001

Dave A.C., Ye A., and Singh H. 2019. Structural and interfacial characteristics of oil bodies in coconuts (Cocos nucifera L.). Food Chem. 276:129–139. 10.1016/j.foodchem.2018.09.125

Elkot W.F., El-Nawasany L.I., and Sakr H.S. 2017. Composition and quality of stirred yoghurt supplemented with apricot kernels powder. J. Agroaliment Process Technol. 23(3):125–130.

Eyidemir E. and Hayta M. 2009. The effect of apricot kernel flour incorporation on the physicochemical andsensory properties of noodle. Afr J Biotechnol. 8:85–90.

Fasolin L.H., Pereira R.N., Pinheiro A.C., Martins J.J., Andrade C.C.P., Ramos O.L., and Vicente A.A. 2019. Emergent food proteins—towards sustainability, health, and innovation. Food Res Int. 125:108586. 10.1016/j.foodres.2019.108586

Femenia A., Rosselló C., Mulet A., and Cañellas J. 1995. Chemical composition of bitter and sweet apricot kernels. J Agric Food Chem. 43:356–361. 10.1021/jf00050a018

Folch J., Lees M., and Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 226(1):497–509. 10.1016/S0021-9258(18)64849-5

Food and Agriculture Organization of the United Nations (FAO). 2011. Feeding the future. World Livestock, Livestock in Food Security. Available at: http://www.fao.org/3/i2373e/i2373e03.pdf

Fratianni F., Ombra M.N., d’Acierno A., Cipriano L., and Nazzaro F. 2018. Apricots: biochemistry and functional properties. Curr Opin Food Sci. 19:23–29. 10.1016/j.cofs.2017.12.006

Gallier S., Acton D., Garg M., and Singh H. 2017. Natural and processed milk and oil body emulsions: bioavailability, bioaccessibility and functionality. Food Struct. 13:13–23. 10.1016/j.foostr.2016.07.005

Gallier S., Gordon K.C., and Singh H. 2012. Chemical and structural characterisation of almond oil bodies and bovine milk fat globules. Food Chem. 132:1996–2006. 10.1016/j.foodchem.2011.12.038

Gallier S. and Singh H. 2012. Behavior of almond oil bodies during in vitro gastric and intestinal digestion. Food Funct. 3:547–555. 10.1039/c2fo10259e

Gallier S., Zhu X.Q., Rutherfurd S.M., Ye A., Moughan P.J., and Singh H. 2013. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. II. Upper digestive tract digestion. Food Chem. 141:3215–3223. 10.1016/j.foodchem.2013.06.019

Gezer I., Haciseferogullari H., Özcan M.M., Arslan D., Asma B.M., and Ünver A. 2011. Physico-chemical properties of apricot (Prunus armeniaca L.) kernels. South West J Hortic Biol Environ. 2(1):1–13.

Ghorab H., Lammi C., Arnoldi A., Kabouche Z., and Aiello G. 2018. Proteomic analysis of sweet algerian apricot kernels (Prunus armeniaca L.) by combinatorial peptide ligand libraries and LC–MS/MS. Food Chem. 239:935–945. 10.1016/j.foodchem.2017.07.054

Ishii T., Matsumiya K., Nambu Y., Samoto M., Yanagisawa M., and Matsumura Y. 2017. Interfacial and emulsifying properties of crude and purified soybean oil bodies. Food Struct. 12:64–72. 10.1016/j.foostr.2016.12.005

Karsavuran N., Charehsaz M., Celik H., Asma B.M., Yakıncı C., and Aydın A. 2015. Amygdalin in bitter sweet seeds of apricots. Toxicol Environ Chem. 96(10):1564–1570. 10.1080/02772248.2015.1030667

Makkhun S., Khosla A., Foster T., McClements D.J., Grundy M.M.L., and Gray D.A. 2015. Impact of extraneous proteins on the gastrointestinal fate of sunflower seed (Helianthus annuus) oil bodies: a simulated gastrointestinal tract study. Food Funct. 6:125–134. 10.1039/C4FO00422A

Mandalari G., Faulks R.M., Rich G.T., Lo Turco V., Picout D.R., Lo Curto R.B., Bisignano G., Dugo P., Dugo G., Waldron K.W., Ellis P.R., and Wickham M.S.J. 2008. Release of protein, lipid, and vitamin E from almond seeds during digestion. J Agric Food Chem. 56:3409–3416. 10.1021/jf073393v

Mantzouridou F.T., Naziri E., Kyriakidou A., Paraskevopoulou A., Tsimidou M.Z., and Kiosseoglou V. 2019. Oil bodies from dry maize germ as an effective replacer of cow milk fat globules in yogurt-like product formulation. LWT–Food Sci Technol. 105:48–56. 10.1016/j.lwt.2019.01.068

Mat D.J.L., Le Feunteun S., Michon C., and Souchon I. 2016. In vitro digestion of foods using pH-stat and the INFOGEST protocol: impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids. Food Res Int. 88:226–233. 10.1016/j.foodres.2015.12.002

Mattheus B., Özcan M.M., and Al Juhaimi F. 2016. Fatty acid composition and tocopherol content of kernel oil from apricot varieties (Hasanbey, Hacıhaliloglu, Kabaasi, and Soganci) collected at different harvest times. Eur Food Res Technol. 242:221–226. 10.1007/s00217-015-2533-8

Minekus M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., Carrière F., Boutrou R., Corredig M., Dupont D., Dufour C., Egger L., Golding M., Karakaya S., Kirkhus B., Le Feunteun S., Lesmes U., MacIerzanka A., MacKie A., Marze S., McClements D.J., Ménard O., Recio I., Santos C.N., Singh R.P., Vegarud G.E., Wickham M.S.J., Weitschies W., and Brodkorb A. 2014. A standardised static in vitro digestion method suitable for food—an international consensus. Food Funct. 5:1113–1124. 10.1039/C3FO60702J

Mirzaei H. and Rezaei K. 2019. Amygdalin contents of oil and meal from wild almond: effect of different heat pretreatment and extraction methods. J Am Oil Chem Soc. 96:1163–1171. 10.1002/aocs.12257

Morais D.R., Rotta E.M., Sargi S.C., Schmidt E.M., Guntendorfer Bonafe E., Eberlin M.N., Sawaya A.C.H.F., and Visentainer J.V. 2015. Antioxidant activity, phenolics and UPLC–ESI[–]–MS of extracts from different tropical fruits parts and processed peels. Food Res Int. 77(3):392–399. 10.1016/j.foodres.2015.08.036

Sığırcı M., Hasdemir M., Akçay M., and Yurtkulu V. 2015. National Apricot Workshop, p. 80. Turkey Ministry of Agricultural and Forestry, Ankara, Turkey.

Tarım Ürünleri Piyasaları- Kayısı .2020. Turkey Ministry of Agricultural and Forestry, Agricultural Economic and Policy Development Institute. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2020-Ocak%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Raporu/Kay%C4%B1s%C4%B1%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasa%20Raporu%202020%20ocak.pdf Accessed 1 March 2020

Wang X., Ye A., and Singh H. 2020. Structural and physicochemical changes in almond milk during in vitro gastric digestion: impact on the delivery of protein and lipids. Food Funct. 11:4314–4326. 10.1039/C9FO02465D

White D.A., Fisk I.D., Mitchell J.R., Wolf B., Hill S.E., and Gray D.A. 2008. Sunflower seed oil body emulsions: rheology and stability assessment of a natural emulsion. Food Hydrocoll. 22(7):1224–1232. 10.1016/j.foodhyd.2007.07.004

Wu H., Shi J., Xue S., Kakuda Y., Wang D., Jiang Y., Ye X., Li Y., and Subramanian J. 2011. Essential oil extracted from peach (Prunus persica) kernel and its physicochemical and antioxidant properties. LWT–Food Sci Technol. 44:2032–2039. 10.1016/j.lwt.2011.05.012

Yan Z., Zhao L., Kong X., Hua Y., and Chen Y. 2016. Behaviors of particle size and bound proteins of oil bodies in soymilk processing. Food Chem. 194:881–890. 10.1016/j.foodchem.2015.08.100

Zaaboul F., Raza H., Cao C., and Yuanfa L. 2019. The impact of roasting, high pressure homogenization and sterilization on peanut milk and its oil bodies. Food Chem. 280:270–277. 10.1016/j.foodchem.2018.12.047

Zderic A., Almeida-Rivera C., Bongers P., and Zondervan E. 2016. Product-driven process synthesis for the extraction of oil bodies from soybeans. J Food Eng. 185:26–34. 10.1016/j.jfoodeng.2016.03.030