Effects of inorganic and organic selenium intervention on resistance of radish to arsenic stress

Main Article Content

Liang Hu
Xianglian Wang
Yuntao Zou
Daishe Wu
Guiqing Gao
Zhiyao Zhong
Yu Liu
Shengming Hu
Houbao Fan
Baojun Zhang

Keywords

arsenic toxicity, selenium intervention, radish, antioxidant enzymes

Abstract

Arsenic (As) pollution, a potential threat for human health, in vegetables is one of the primary sources of As intake by the human body. In the Pot Experiment, the As content, physiological index and antioxidant enzyme activity of radish were determined. The results demonstrated that the order of As concentration in radish tissues was roots > stems > leaves. Organic selenium (Se) can inhibit the absorption of arsenic in radish more effectively than inorganic Se. The application of organic Se and low concentration of selenite (Se(IV)) significantly enhanced the stress resistance of radish for increasing superoxide dismutase and peroxidase activity, increasing soluble protein, chlorophyll and proline content, and reducing malondialdehyde content. In contrast, the high concentration of Se(IV) and selenate (Se(VI)) treatment group demonstrated stress and toxicological effects on radish. This study provides an idea for further research on the remediation mechanism of Se to As toxicity and provides a reference for the adoption of Se fertilizer in agriculture.

Abstract 1129 | PDF Downloads 932 HTML Downloads 451 XML Downloads 453

References

Bai J.H., Liu J.H., Zhang N., Yang J.H., Sa R.L., and Wu L. 2013. Effect of alkali stress on soluble sugar, antioxidant enzymes and yield of oat. J Integr Agric. 12(8):1441–1449. 10.1016/S2095-3119(13)60556-0

Beauchamp C. and Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 44(1):276–287. 10.1016/0003-2697(71)90370-8.

Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254. 10.1016/0003-2697(76)90527-3

Camara A.Y., Wan Y., Yu Y., Wang Q., and Li H. 2018. Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.). Ecotoxicol Environ Saf. 148:869–875. 10.1016/j.ecoenv.2017.11.064

Carbonell-Barrachina A., Burlo F., and Valero D.1999. Arsenic toxicity and accumulation in turnip as affected by arsenic chemical speciation. J Agric Food Chem. 47(6):2288–2294. 10.1080/03601239909373220

Chu J., Yao X., Yue Z., Li J., and Zhao J. 2013. The effects of selenium on physiological traits, grain selenium content and yield of winter wheat at different development stages. Biol Trace Elem Res. 151(3):434–440. 10.1007/s12011-012-9575-6

Dahal B.M., Fuerhacker M., Mentler A., Shrestha R.R., and Blum W.E. 2008. Screening of arsenic in irrigation water used for vegetable production in Nepal. Arch Agron Soil Sci. 54(1):41–51. 10.1080/03650340701628197

Diao M., Ma L., Wang J., Cui J., Fu A., and Liu H.Y. 2014. Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Regul. 33(3):671–682. 10.1007/s00344-014-9416-2

Dong Y., Gao M., and Qiu W., 2021. Uptake of microplastics by carrots in presence of As (III): combined toxic effects. J Hazard Mater. 411(1):125055. 10.1016/j.jhazmat.2021.125055

Fendorf S., Michael H.A., and Van Geen A. 2010. Spatial and temporal variations of groundwater arsenic in south and southeast asia. Science. 328(5982):1123–1127. 10.1126/science.1172974

Feng R., Wei C., and Tu S. 2013. The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot. 87(87):58–68. 10.1016/j.envexpbot.2012.09.002

Han D., Xiong S., Tu S., Liu J., and Chen C. 2015. Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotiana tabacum L. Environ Exp Bot. 117:12–19. 10.1016/j.envexpbot.2015.04.008

Hashemi A., Abdolzadeh A., Sadeghipour H.R. 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci Plant Nutr. 56(2):44–253. 10.1111/j.1747-0765.2009.00443.x

Hawrylak-Nowak B. 2009. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res. 132(1–3):259–269. 10.1007/s12011-009-8402-1

Hu L., Fan H.B., Wu D.S., Liao Y.C., Shen F.F., Liu W.F., Huang R.Z., Zhang B.J., and Wang X.L. 2020. Effects of selenium on antioxidant enzyme activity and bioaccessibility of arsenic in arsenic-stressed radish. Ecotoxicol Environ Saf. 200:110768. 10.1016/j.ecoenv.2020.110768

Hu L., Wang X.L., Wu D.S., Zhang B.J., Fan H.B., Shen F.F., Liao Y.C., Huang X.P., and Gao G.Q. 2021. Effects of organic selenium on absorption and bioaccessibility of arsenic in radish under arsenic stress. Food Chem. 344:128614. 10.1016/j.foodchem.2020.128614

Hu L., Zhang B.J., Wu D.S., Fan H.B., Tu J., Liu W.F., Huang R.Z., and Huang X.P. 2019. Estimation of arsenic bioaccessibility in raw and cooked radish using simulated in vitro digestion. Food Funct. 10:1426–1432. 10.1039/C8FO02003E

Huang R.Q., Gao S.F., Wang W.L., Staunton S., and Wang G. 2006. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci Total Environ. 368(2–3):531–541. 10.1016/j.scitotenv.2006.03.013

Khan M.I.R., Nazir F., Asgher M., Per T.S., and Khan N.A. 2015. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol. 173:9–18. 10.1016/j.jplph.2014.09.011

Kramárová Z., Fargašová A., Molnárová M., and Bujdoš M. 2012. Arsenic and selenium interactive effect on alga Desmodesmus quadricauda. Ecotoxicol Environ Saf, 86:1–6. 10.1016/j.ecoenv.2012.08.028

La Porte P.F. 2011. Selenium in the detoxification of arsenic: mechanisms and clinical efficacy. PhD Dissertation, The University of Chicago, Chicago, IL.

Leyva R., Sánchez-Rodríguez E., Ríos J.J., Rubio-Wilhelmi M.M., Romero L., Ruiz J.M., and Blasco B. 2011. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci. 181(2):195–202. 10.1016/j.plantsci.2011.05.007

Li Z., Liang D., Peng Q., Cui Z., Huang J., and Lin Z. 2017. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review. Geoderma. 295:69–79. 10.1016/j.geoderma.2017.02.019

Li S.F., Pu H.P., and Wang H.B. 2008. Advances in the study of effects of arsenic on plant. Photosynthesis Soils 3:6–12. 10.1002/path.1700340417

Malik J.A., Goel S., Kaur N., Sharma S., Singh I., and Nayyar H. 2012. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot. 77:242–248. 10.1016/j.envexpbot.2011.12.001

Mcbride M.B. 2013. Arsenic and lead uptake by vegetable crops grown on historically contaminated orchard soils. Appl Environ Soil Sci. 10:1–8. 10.1155/2013/283472

Meng M., Huang X.F., Li L., Luo Y.C., and Wang W.S. 2017. Effects of arsenic stress on activities of antioxidant enzymes of eucalyptus. Genomics Appl Biol. 12:79–85.

Mishra S., Alfeld M., Sobotka R., Andresen E., Falkenberg G., and Küpper H. 2016. Analysis of sublethal arsenic toxicity to ceratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis. J Exp Bot. 67(15):4639–4646. 10.1093/jxb/erw238

Pan Y., Wu L.J., and Yu Z.L. 2006. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul. 49(2–3):157–165. 10.1007/s10725-006-9101-y

Pandey C. and Gupta M. 2015. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater. 287:384–391. 10.1016/j.jhazmat.2015.01.044

Pandey C. and Gupta M. 2018 Selenium amelioration of arsenic toxicity in rice shows genotypic variation: a transcriptomic and biochemical analysis. J Plant Physiol, 231:168–181. 10.1016/j.jplph.2018.09.013

Pedrero Z., Madrid Y., and Cámara C. 2006. Selenium species bioaccessibility in enriched radish (Raphanus sativus): a potential dietary source of selenium. J Agric Food Chem. 54(6):2412–2417. 10.1021/jf052500n

Praveen A., Khan E., Ngiimei D.S., Perwez, M., Sardar M., and Gupta M. 2018. Iron oxide nanoparticles as nano-adsorbents: a possible way to reduce arsenic phytotoxicity in Indian mustard plant (Brassica juncea L.). J Plant Growth Regul. 37:612–624. 10.1007/s00344-017-9760-0

Rayman M.P. 2005. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc. 64(4):527–542. 10.1007/s00203-002-0478-3

Sae-Lee N., Kerdchoechuen O., and Laohakunjit N. 2012. Chemical qualities and phenolic compounds of Assam tea after soil drench application of selenium and aluminium. Plant Soil. 356(1–2):381–393. 10.1007/s11104-012-1139-1

Shri M., Kumar S., Chakrabarty D., Trivedi P.K., Mallick S., Misra P., and Tuli R. 2009. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf. 72(4):1102–1110. 10.1016/j.ecoenv.2008.09.022

Silva A.J., Nascimento C.W., Neto G., da Silva A., and Silva Junior E.A. 2015. Effects of silicon on alleviating arsenic toxicity in maize plants. Revista Brasileira de Ciência do Solo. 39(1):289–296. 10.13140/RG.2.1.1934.7364

Smith E., Juhasz A.L., and Weber J. 2009. Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environ Geochem Health. 31(1):125–132. 10.1007/s10653-008-9242-1

Su D., Li Y., and Gladyshev V.N. 2005. Selenocysteine insertion directed by the 3´-UTR SECIS element in Escherichia coli. Nucleic Acids Res. 33(8):2486–2492. 10.1093/nar/gki547

Surai P. and Dvorska J. 2001. Is organic selenium better for animals than inorganic sources? Feed Mix. 9(5):8–10.

Tripathi P., Mishra A., Dwivedi S., Chakrabarty D., Trivedi P.K., Singh R.P., and Tripathi R.D. 2012. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf. 79:189–198. 10.1016/j.ecoenv.2011.12.019

Wang C. and Lovell R.T. 1997. Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture. 152(1–4):223–234. 10.1016/S0044-8486(96)01523-2

Wu M.L., Li H.H., Jia Y.Y., Yang L.T., and Wang G. 2015. Influence of arsenic stress on the photosynthetic pigments and chlorophyll fluorescence characteristics of different tobacco cultivars. Asian J Ecotoxicolo. 10(3):216–223.

Yao X., Chu J., and Wang G. 2009. Effects of selenium on wheat seedlings under drought stress. Biol Trace Elem Res. 130(3):283–290. 10.1007/s12011-009-8328-7

Yeh J.Y., Cheng L.C., Liang Y.C., and Ou B.R. 2003. Modulation of the arsenic effects on cytotoxicity, viability, and cell cycle in porcine endothelial cells by selenium. Endothelium. 10(3):127–139. 10.1080/713715229

Yin B.F. and Zhang Y.M. 2016. Physiological regulation of Syntrichia caninervis Mitt. in different microhabitats during periods of snow in the gurbantünggüt desert, northwestern China. J Plant Physiol. 194:13–22. 10.1016/j.jplph.2016.01.015.

Zeng X.B., Li L.F., and Mei X.R. 2008. Heavy metal content in Chinese vegetable plantation land soils and related source analysis. Agric Sci China. 7(9):1115–1126. 10.1016/S1671-2927(08)60154-6

Zheng X.M, Zhang Z.Y, Chen J.C., Liang H.T., Chen X., Qin Y. 2022. Comparative evaluation of in vivo relative bioavailability and in vitro bioaccessibility of arsenic in leafy vegetables and its implication in human exposure assessment. J Hazard Mater. 423:126909. 10.1016/j.jhazmat.2021.126909

Zhu S., Liang Y., Gao D., An X., and Kong F. 2017. Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Sci Hortic. 218:87–94. 10.1016/j.scienta.2017.02.025