Identification and characterization of antioxidant and antimicrobial peptides from enzymatic hydrolysates of Turkish fermented sausage (sucuk)
Main Article Content
Keywords
Bioactive peptide, enzymatic hydrolysis, LC-MS/MS, mass spectrometry, sephadex G25
Abstract
In this study, in order to examine the effect of fermentation on bioactive peptide (BAP) formation, samples were taken from fermented sucuks produced using the traditional method on days 0, 1, 3, 5, and 10, and peptide extractions were obtained. The extracted samples were enzymatically hydrolyzed using two different enzymes (pepsin and trypsin), and the hydrolysates were injected into HPLC and separated into peptide fractions through a column filled with Sephadex G-25 stationary phase. Lyophilized fractions were subjected to LC-MS/MS analysis to determine peptide profiles. According to LC-MS/MS mass spectrometry data of peptide fractions obtained from sucuk samples during the 10-day fermentation, a total of 10 different peptides were detected, including six different dipeptides (KD, LK, EL, KP, HL, and IR) and 3 different tripeptides (GPP, GAA, and RHA) with antioxidant activity and 1 tetrapeptide (CIRA) with antimicrobial activity.
References
Anonymous. 2019. Turkish food codex; Meat, prepared meat mixtures and meat products communiqué, Communiqué No: 2018/52, Number: 30670, Official Gazette
AOAC. 1990. “Official methods of analysis of the association of official analytical chemists” 15th ed., Association of Official Analytical Chemists, Washington, DC.
Arihara K. 2006a. In: Advanced technologies for meat processing, eds. By Nollet N.M.L. and Toldrá F. (CRC Press, Boca Raton, FL), pp. 245–274.
Arihara K. 2006b. Meat science, strategies for designing novel functional meat products. Meat Sci. 74(1): 219–229. https://doi.org/10.1016/j.meatsci.2006.04.028
Aro Aro J.M., Nyam-Osor P., Tsuji K., Shimada K., Fukushima M., Sekikawa M. 2010. The effect of starter cultures on proteolytic changes and amino acid content in fermented sucuks. Food Chem. 119(1): 279–285. https://doi.org/10.1016/j.foodchem.2009.06.025
Ay C. and Şanlı T. 2018. Formation of bioactive peptides in dairy products and functional properties. AMUAFJ. 15(1): 115–120. https://doi.org/10.25308/aduziraat.340581
Bai J.J., Lee J.G., Lee S.Y., Kim S., Choi M.J., Cho Y. 2017. Changes in quality characteristics of pork patties containing antioxidative fish skin peptide or fish skin peptide-loaded nanolipo-somes during refrigerated storage. Korean J. Food Sci. Anim. Resour. 37(5): 752–763. https://doi.org/10.5851/kosfa.2017.37.5.752
Beşir B. 2019. Modeling the possibilities of reducing the amount of synthetic nitrite used in the production of fermented sucuk with carrot and cherry stem powders using the response surface method. MSc Thesis, Bolu Abant İzzet Baysal University, Institute of Science and Technology, Department of Food Engineering, Bolu.
Bhat Z.F., Kumar S., Bhat H.F. 2015. Bioactive peptides of animal origin: A review. J. Food Sci. Technol. 52(9): 5377–5392. https://doi.org/10.1007/s13197-015-1731-5
Bou R., Cofrades S., Jiménez-Colmenero F. 2016. Fermented meat sucuks in fermented Foods in health and disease prevention, ed. By Frias J., Martínez-Villaluenga C., Peñas E. (Academic Press, Elsevier, London, UK), pp. 203–235.
Chakrabarti S., Guha S., Majumder K. 2018. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients. 10(11): 1738. https://doi.org/10.3390/nu10111738
Daliri EB–M., Oh D., Lee B.H. 2017. Bioactive peptides. Foods. 6(5): 32. https://doi.org/10.3390/foods6050032
Daoud R., Dubois V., Bors-Dodita L., Nedjar-Arroume N., Krier F., Chihib N.E., Mary P., Kouach M., Briand G., Guillochon D. 2005. New antibacterial peptide derived from bovine hemoglobin. Peptides. 26: 713–719. https://doi.org/10.1016/j.peptides.2004.12.008
Demir N. 2013. The effect of using turnip juice in fermented sausage production on the viability of some pathogens, MSc Thesis, Celal Bayar University, Institute of Science and Technology, Manisa.
Djabou N., Lorenzi V., Guinoiseau E., Andreani S., Giuliani M.C., Desjobert J.M., Bolla J.M., Costa J., Berti L., Luciani A., Muselli A. 2013. Phytochemical composition of corsican teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control. 30: 354–363. https://doi.org/10.1016/j.foodcont.2012.06.025
Dullius A., Fassina P., Giroldi M., Goettert M.I., de Souza C.F.V. 2020. A biotechnological approach for the production of branched chain amino acid containing bioactive peptides to ımprove human health: A review. Food Res. Int. 131: 109002. https://doi.org/10.1016/j.foodres.2020.109002
Ergezer H., Gökçe R., Elgin Ş., Akcan T. (2018). Effects of cornelian cherry (Cornus mas L.) extract on quality characteristics of sucuk. PAMUKKALE U J ENG SC. 24(7): 1376–1381.
Evren M. and İnan Çınkır N. 2019. Et ve Et Ürünlerinde Biyoaktif Bileşenler. 4th International Anatolian Agriculture, Food, Environment and Biology Congress.
Frias J., Martinez-Villaluenga C., Peñas E. 2016. Fermented foods in health and disease prevention. United Kingdom: Elsevier. https://doi.org/10.1016/C2014-0-01734-0
Gallego M., Mora L., Escudero E., Toldrá F. 2018. Bioactive peptides and free amino acids profiles in different types of European dry-fermented sucuks. Int. J. Food Microbiol. 276: 71–78. https://doi.org/10.1016/j.ijfoodmicro.2018.04.009
Gümüş Z.P., Moulahoum H., Tok K., Kocadag Kocazorbaz E., Zihnioglu F. 2022. Activity-guided purification and identification of endogenous bioactive peptides from barley sprouts (Hordeum vulgare L.) with diabetes treatment potential. IJFST. https://doi.org/10.1111/ijfs.16172
İnce E., Özfiliz N., Efil M.M. 2018. Türkiye’de süpermarketlerde satışa sunulan fermente ve isıl işlem görmüş sucukların histolojik muayene ile kalitelerinin belirlenmesi. Uludag Univ., J. Fac. Vet. Med. 35: 17–23. https://doi.org/10.30782/uluvfd.411172
Jang A. and Lee M. 2005. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Sci. 69(4): 653–661. https://doi.org/10.1016/j.meatsci.2004.10.014
Karakuş M.C. 2011. Determination of physical, chemical and microbiological properties of cloth sausages produced in Tokat region, MSc Thesis, Namık Kemal University, Institute of Science and Technology, Department of Food Engineering, Tekirdağ.
Kartal C., Bakar B., Türköz B.K., Ötleş S. 2023. Current methods used in the production, purification and characterization of food-derived proteins and bioactive peptides and bioinformatics approaches. NOHU J. Eng. Sci. 120(2): 395–407. http://doi.org/10.28948/ngumuh.1177148
Kaynarca G.B. and Gümüş T. 2020. Effect of gamma irradiation on physicochemical and microbiological quality of fermented sausages. JOTAF. 17(3). https://doi.org/10.33462/jotaf.667489
Kesler Y., Doğan M., Karaman S., Kayacıer A. 2008. Kan basıncını düşürücü süt kaynaklı peptidler. Türkiye 10. Gıda Kongresi, Erzurum, pp. 811–814.
Korhonen H. and Pihlanto A. 2003. Food-derived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 9(16): 1297–1308. https://doi.org/10.2174/1381612033454892
Kumari R., Sanjukta S., Sahoo D., Rai A.K. 2022. Functional peptides in Asian protein rich fermented foods: Production and health benefts. SMAB. 2: 1–13. https://doi.org/10.1007/s43393-021-00040-0
Liu L., Li S., Zheng J., Bu T., He G., Wu J. 2020. Safety considerations on food protein-derived bioactive peptides. Trends Food Sci Technol. 96: 199–207. https://doi.org/10.1016/j.tifs.2019.12.022
Luan X., Feng M., Sun J. 2021. Effect of Lactobacillus plantarum on antioxidant activity in fermented sucuk. Food Res. Int. 144. https://doi.org/10.1016/j.foodres.2021.110351
Mejri L., Vásquez-Villanuevaa R., Hassounab M., Marinaa M.L., García M.C. 2017. Identification of peptides with antioxidant and antihypertensive capacities by RP-HPLC-Q-TOF-MS in dry fermented camel sucuks inoculated with different starter cultures and ripening times. Food Res. Int. 100: 708–716. https://doi.org/10.1016/j.foodres.2017.07.072
Minkiewicz P., Iwaniak A., Darewicz M. 2019. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 20(23): 5978. https://doi.org/10.3390/ijms20235978
Montesano D., Gallo M., Blasi F., Cossignani L. 2020. Biopeptides from vegetable proteins: New scientific evidences. Curr. Opin. Food Sci. 31: 31–37. https://doi.org/10.1016/j.cofs.2019.10.008
Mora L., Escudero E., Aristoy M.C., Toldrá F. 2015. A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sucuks. IJMB. 212: 41–48. https://doi.org/10.1016/j.ijfoodmicro.2015.05.022
Muguerza E., Fista G., Ansorena D., Astiasaran I., Bloukas J.G. 2002. Effect of fat level and partial replacement of pork backfat with olive oil on processing and quality charactersitics of fermented sucuks. Meat Sci. 61: 397–404. https://doi.org/10.1016/S0309-1740(01)00210-8
Öksüztepe G., Güran H.Ş., İncili G.K., Gül S.B. 2011. Microbiological and chemical quality of sausages marketed in Elazığ. F.Ü.Sağ.Bil.Vet.Derg. 25(3): 107–114.
Özturunç Ş. 2022. Investigation of effects of using tofu, fenugreek and whey powders as fat replacers in fermented sucuk production on physicochemical and microbiological properties, MSc Thesis, Suleyman Demirel University, Institute of Science and Technology, Department of Food Engineering, Isparta.
Parrot S., Degraeve P., Curia C., Martial-Gros A. 2003. In vitro study on digestion of peptides in Emmental cheese: Analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung. 47(2): 87–94. https://doi.org/10.1002/food.200390032
Pehlivanoğlu H., Nazlı B., İmamoğlu H., Çakır B. 2015. Determination of the quality characteristics of products as sold under fermented sausage products in the market and the comparison with a traditional Turkish fermented sausage (Sucuk). J. Fac. Vet. Med. Istanbul Univ. 41(2): 191–198. https://doi.org/10.16988/iuvfd.2015.84628
Pepe G., Sommella E., Ventre G., Scala M.C., Adesso S., Ostacolo C., Marzocco S., Novellino E., Campiglia P. 2016. Antioxidant peptides released from intestinal protection and bioavailability. J. Funct. Foods. 26: 494–505. https://doi.org/10.1016/j.jff.2016.08.021
Piovesana S., Capriotti A.L., Cavaliere C., La Barbera G., Montone C.M., Chiozzi R.Z., Laganà A. 2018. Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Anal. Bioanal. Chem. 410(15): 3425–3444. https://doi.org/10.1007/s00216-018-0852-x.
Ryan J.T., Ross R.P., Bolton D., Fitzgerald G.F., Stanton C. 2011. Bioactive peptides from muscle sources: Meat and fish. Nutrients. 3, 765–791. https://doi.org/10.3390/nu3090765
Seo H.W., Seo J.K., Yang H.S. 2016. Supplementation of pork patties with bovine plasma protein hydrolysates augments antioxidant properties and improves quality. Korean J. Food. Sci. Anim. Resour. 36(2): 198–205. https://doi.org/10.5851/kosfa.2016.36.2.198
Sun J., Zhou C., Cao J., He J., Sun Y., Dang Y., Pan D., Xia Q. 2022. Purification and characterization of novel antioxidative peptides from duck liver protein hydrolysate as well as their cytoprotection against oxidative stress in HepG2 cells. Front. Nutr. 9: 1–12. https://doi.org/10.3389/fnut.2022.848289
Uluğ S.K., Jahandideh F., Wu J. 2021. Novel technologies for the production of bioactive peptides. Trends Food Sci. Technol. 108: 27–39. https://doi.org/10.1016/j.tifs.2020.12.002
Ünal, M.Ü., Şener, A., Cemek K. 2018. Effects of bioactive peptides on health. Gıda. 43(6): 930–942. https://doi.org/10.15237/gida.GD18048
Vaštag Ž., Popović L., Popović S., Petrović L., Peričin D. 2010. Antioxidant and angiotensin-I converting enzyme inhibitory activity in the water-soluble protein extract from Petrovac sucuk (Petrovská Kolbása). Food Control. 21: 1298–1302. https://doi.org/10.1016/j.foodcont.2010.03.004
Verma A.K., Chatlı M.K., Kumar P., Mehta N. 2017. Antioxidant and antimicrobial activity of protein hydrolysate extracted from porcine liver. Indian J. Anim. Sci. 87(6): 711–717. https://doi.org/10.56093/ijans.v87i6.71070
Wang M, Simon J.E., Aviles I.F., He K., Zheng Q.Y., Tadmor Y. 2003. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J. Agric. Food Chem. 51: 601–608. https://doi.org/10.1021/jf020792b
Wang L., Huang J., Chen Y., Huang M., Zhou G. 2015. Identification and characterization of antioxidant peptides from enzymatic hydrolysates of duck meat. J. Agric. Food Chem. https://doi.org/10.1021/jf506120w
Wang J., Lu S., Guo X., Li R., Huang L. 2020. Effect of crude peptide extract from mutton ham on antioxidant properties and quality of mutton patties. J. Food Process. Preserv. 44: e14436. https://doi.org/10.1111/jfpp.14436
Xiong Q., Zhang M., Wang T., Wang D., Sun C., Bian H., Li P., Zou Y., Xu W. 2020. Lipid oxidation induced by heating in chicken meat and the relationship with oxidants and antioxidant enzymes activities. Poult. Sci. 99(3): 1761–1767. https://doi.org/10.1016/j.psj.2019.11.013
Yüce F. 2023. Geleneksel Bir Et Ürünü: Fermente Sucuk. Gıda Bilimi ve Gastronomi-I, ed. By F. Hayıt, pp. 355–377.
Yüksel D. and İnanç A.L. 2022. Determination of bioactive peptides in Maras Tarhana produced by traditional method and direct fermentation. KSU J. Agric. Nat. 25(2): 357–366. https://doi.org/10.18016/ksutarimdoga.vi.887719