Impact of drying temperature and slice thickness on the drying kinetics, color properties, and antioxidant activity of the Egyptian Opuntia dillenii fruit

##plugins.themes.bootstrap3.article.main##

Yahya Hamed
Hassan E Embaby
Khaled M Youssef
Eman Fayad
Ola A Abu Ali
Fayaz Althobaiti
S.K. El-Samahy
Amal A Gaballah

Keywords

Abstract

This study examined how drying temperature (50°C, 60°C, and 70ºC) and slice thickness (0.5 cm and 1.5 cm) influence the drying behavior and quality of Opuntia dillenii slices using a hot air dryer. Key parameters, such as color, ascorbic acid (AA), total phenolic content (TPC), and free radical scavenging activity (FRSA), were analyzed. Drying kinetics followed Wang and Singh and Thomson models, showing faster moisture reduction at higher temperatures and in thinner slices. Effective moisture diffusivity ranged from 1.1399 × 10–8 to 5.9273 × 10–8 m²/s and activation energy from 20.34 kJ/mol to 41.99 kJ/mol. Higher temperatures and thicker slices caused more color changes and nutrient losses, particularly in AA, betalains, TPC, and FRSA. Optimal drying conditions, combining higher temperatures and thinner slices, enhanced drying efficiency while preserving nutritional quality.

Abstract 314 | PDF (Inglese) Downloads 97 XML (Inglese) Downloads 57 HTML (Inglese) Downloads 0

Riferimenti bibliografici

Alshaikhi A.I., Alzahrani M.Y., Hazzazi J.S., Kurdi J.R. and Ramadan M.F. 2023. Nutritional aspects, bioactive phytochemicals and biomedical traits of Opuntia spp.: current trends and applications. J Umm Al-Qura Univ Appl Sci https://doi.org/10.1007/s43994-023-00101-1
Association of Official Analytical Chemists (AOAC) 2000. Official Methods of Analysis of Association of Official Analytical Chemists, 17th edn. AQAC, Gaithersburg, MD.
Chikpah S.K., Korese J.K., Sturm B. and Hensel O. 2022. Colour change kinetics of pumpkin (Cucurbita moschata) slices during convective air drying and bioactive compounds of the dried products. J Agr Food Res. 10:100409. https://doi.org/10.1016/j.jafr.2022.100409
Crank J. 1975. The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford, UK, pp. 69–88.
Darvishi H., Zarein M., Minaie S. and Khafajeh H. 2014. Exergy and energy analyses, drying kinetics and mathematical modeling of white mulberry drying process. Int J Food Eng. doi:10.1515/ijfe-2013-0065
Demiray E., Yazar J.G., Aktok Ö., Çulluk B., Çalışkan Koç G. and Pandiselvam R. 2023. The effect of drying temperature and thickness on the drying kinetic, antioxidant activity, phenolic compounds, and color values of apple slices. J Food Quality. 2023:7426793. https://doi.org/10.1155/2023/7426793
de Souza R.L.A., Santana M.F.S., de Macedo E.M.S., de Brito E.S. and Correia R.T.P. 2015. Physicochemical, bioactive and functional evaluation of the exotic fruits Opuntia ficus-indica and Pilosocereus pachycladus Ritter from the Brazilian caatinga. J Food Sci Technol. 52(11):7329–7336. https://doi.org/10.1007/s13197-015-1821-4
Doymaz İ. 2012. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Convers Manag. 56:199–205. https://doi.org/10.1016/j.enconman.2011.11.027
Falade K.O. and Solademi O.J. 2010. Modelling of air drying of fresh and blanched sweet potato slices. Int J Food Sci Technol. 45(2):278–288. https://doi.org/10.1111/j.1365-2621.2009.02133.x
Ghafoor K., Al Juhaimi F., Özcan M.M., Uslu N., Babiker E.E. and Mohamed Ahmed IA. 2020.Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. Food Sci Technol (LWT). 126:109354. https://doi.org/10.1016/j.lwt.2020.109354
Gokhale S.V. and Lele S.S. 2014. Betalain content and antioxidant activity of beta vulgaris: effect of hot air convective drying and storage. J Food Pro Preserv. 38(1):585–590. https://doi.org/10.1111/jfpp.12006
Janiszewska-Turak E., Rybak K., Grzybowska E., Konopka E. and Witrowa-Rajchert D. 2021. The influence of different pretreatment methods on color and pigment change in beetroot products. Molecules 26(12):xxx. https://doi.org/10.3390%2Fmolecules26123683
Jeevarathinam G., Pandiselvam R., Pandiarajan T., Preetha P., Krishnakumar T., Balakrishnan M., Thirupathi V., Ganapathy S. and Amirtham D. 2022. Design, development, and drying kinetics of infrared-assisted hot air dryer for turmeric slices. Food Proc Eng. 45(6):e13876. https://doi.org/10.1111/jfpe.13876Jéssica L., Vega-Gálvez A., Torres M.J., Lemus-Mondaca R., Quispe-Fuentes I. and Di Scala K. 2013. Effect of dehydration temperature on physico-chemical properties and antioxidant capacity of goldenberry (Physalis peruviana L.). Chilean J Agric Res. 73(3):293–300. http://dx.doi.org/10.4067/S0718-58392013000300013
Korese, J.K. and Achaglinkame, M.A. 2024. Convective drying of Gardenia erubescens fruits: effect of pretreatment, slice thickness and drying air temperature on drying kinetics and product quality. Heliyon 10(4):e25968. https://doi.org/10.1016/j.heliyon.2024.e25968
Korese J.K., Achaglinkame M.A. and Chikpah S.K. 2021.Effect of hot air temperature on drying kinetics of palmyra (Borassus aethiopum Mart.) seed-sprout fleshy scale slices and quality attributes of its flour. J Agric Food Res. 6:100249. https://doi.org/10.1016/j.jafr.2021.100249
Lahsasni S., Kouhila M., Mahrouz M. and Jaouhari J.T. 2004. Drying kinetics of prickly pear fruit (Opuntia ficus indica). J Food Eng. 61(2):173–179. https://doi.org/10.1016/S0260-8774(03)00084-0
Li M., Chen Y., Wang X., Cheng S., Liu F. and Huang L. 2019. Determination of drying kinetics and quality changes of Panax quinquefolium L. dried in hot-blast air. Food Sci Technol (LWT). 116:108563. https://doi.org/10.1016/j.lwt.2019.108563
Lu W.C., Chiu C.S., Chan Y.J., Mulio A.T. and Li P.H. 2023. Recent research on different parts and extracts of Opuntia dillenii and its bioactive components, functional properties, and applications. Nutrients. 15(13):xxx. https://doi.org/10.3390%2Fnu15132962
Meisami-asl, E., Rafiee, S., Keyhani, A., and Tabatabaeefar, A. 2010. Determination of suitable thin layer drying curve model for apple slices (variety-Golab). Plant Omics. 3(3):103–108.‏
Minuye M., Getachew P., Laillou A., Chitekwe S. and Baye K. 2021. Effects of different drying methods and ascorbic acid pretreatment on carotenoids and polyphenols of papaya fruit in Ethiopia. Food Sci Nutr. 9(6):3346–3353. https://doi.org/10.1002/fsn3.2324
Parveez Zia M. and Alibas I. 2021. The effect of different drying techniques on color parameters, ascorbic acid content, anthocyanin and antioxidant capacities of cornelian cherry. Food Chem. 364:130358. https://doi.org/10.1016/j.foodchem.2021.130358
Pateiro M., Vargas-Ramella M., Franco D., Gomes da Cruz A., Zengin G., Kumar M., Dhama K. and Lorenzo J.M. 2022. The role of emerging technologies in the dehydration of berries: quality, bioactive compounds, and shelf life. Food Chem X. 16:100465. https://doi.org/10.1016%2Fj.fochx.2022.100465
Ravichandran K., Saw N.M.M.T., Mohdaly A.A.A., Gabr A.M.M., Kastell A., Riedel H., Cai Z., Knorr D. and Smetanska I. 2013. Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int. 50(2):670–675. https://doi.org/10.1016/j.foodres.2011.07.002
Shakoor A., Zhang C., Xie J. and Yang X. 2022. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem. 393:133416. https://doi.org/10.1016/j.foodchem.2022.133416
Sturm B., Raut S., Chikpah S.K., Ndisya J., Hensel O., Esper A. and Korese J.K. 2023. Increase of nutritional security in Sub-Saharan Africa through the production of dried products from underutilized crops. Drying Tech. 41(2):322–334. https://doi.org/10.1080/07373937.2022.2094400
Tan S., Tang J., Shi W., Wang Z., Xiang Y., Deng T., Gao X., Li W. and Shi S. 2020. Effects of three drying methods on polyphenol composition and antioxidant activities of Litchi chinensis Sonn. Food Sci Biotechnol. 29(3):351–358. https://doi.org/10.1007%2Fs10068-019-00674-w
Vega-Gálvez A., Ah-Hen K., Chacana M., Vergara J., Martínez-Monzó J., García-Segovia P., Lemus-Mondaca R. and Di Scala K. 2012. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem. 132(1):51–59. https://doi.org/10.1016/j.foodchem.2011.10.029
Wanderley Rd O.S., Figueirêdo R.M.Fd., Queiroz A.J.dM., Santos F.Sd., Silva A.P.dF., Paiva Y.F., Moura H.V., Silva E.T.dV., Carvalho A.J.dBA., Lima Md.S., Campos A.R.N., Gregório M.G. and Lima A.G.Bd. 2023. Effect of drying temperature on antioxidant activity, phenolic compound profile and hygroscopic behavior of pomegranate peel and seed flours. Food Sci Technol (LWT). 189:115514. https://doi.org/10.1016/j.lwt.2023.115514
Wang Z., Sun J., Chen F., Liao X. and Hu X. 2007. Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J Food Eng. 80(2):536–544. https://doi.org/10.1016/j.jfoodeng.2006.06.019
Wu B., Ma H., Qu W., Wang B., Zhang X., Wang P., Wang J., Atungulu G.G., Pan Z. 2014. Catalytic infrared and hot air dehydration of carrot slices. J Food Process Eng. 37:111–121. https://doi.org/10.1111/jfpe.12066
Xiao H-W., Pang C-L., Wang L-H., Bai J-W., Yang W-X. and Gao Z-J. 2010. Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosyst Eng. 105(2):233–240. https://doi.org/10.1016/j.biosystemseng.2009.11.001
Youssef, K.M. 2015. Impact of hot-air drying temperature and velocity on drying kinetics, color, phytochemicals and antioxidant activity of cape gooseberry (Physalis peruviana L.) fruits. J Food Dairy Sci. 6(1):23–40.‏
Zogzas N.P., Maroulis Z.B. and Marinos-Kouris D. 1996. Moisture diffusivity data compilation in foodstuffs. Dry Technol. 14(10):2225–2253. https://doi.org/10.1080/07373939608917205