Recent advances in innovative strategies for controlling microbial growth in food system: a concise review
##plugins.themes.bootstrap3.article.main##
Keywords
Abstract
Food preservation is a longstanding discipline encompassing traditional techniques such as sun drying, roasting, smoking, fermenting, and salting to maintain agricultural products. Current estimates indicate that one-third of agricultural product is lost to food deterioration, with 25% of the overall food loss ascribed to microbiological spoiling. Microbiological contamination of food can occur at several stages in the supply chain: during harvesting, post-harvest, processing, and storage at the point of sale. This results in an elevated risk of human exposure to harmful microbes. To address this issue, several creative solutions have been developed to restrict microbial development across the food supply chain. This review succinctly addressed the innovative strategies both non-conventional and emerging to control the growth of pathogenic microorganisms in food. The innovative strategies reviewed in this paper were broadly classified into technological and non-technological-based methods. These alternative technologies might markedly reduce processing period, conserve energy, and enhance food safety, ultimately helping the food sector. Nevertheless, some emerging technologies have garnered significant interest from researchers, food producers, and consumers; yet various hurdles must be addressed before to achieving full industrial and consumer acceptance. Issues such as antibiotic resistance and the identification of novel pathogens persist, underscoring the necessity for ongoing study and development in this domain.
Riferimenti bibliografici
Abdelhamid, A.G., and El-Dougdoug, N.K. 2020. Controlling foodborne pathogens with natural antimicrobials by biological control and antivirulence strategies. Heliyon. 6(9):e05020. 10.1016/j.heliyon.2020.e05020
Abdelhamid, A.G., El-Masry, S.S., and El-Dougdoug, N.K. 2019. Probiotic lactobacillus and bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J. 10(4):337–350. 10.1007/s13167-019-00184-z
Abdelhamid, A.G., and Yousef, A.E. 2019. The microbial lipopeptide paenibacterin disrupts desiccation resistance in Salmonella enterica, Serovars tennessee and Eimsbuettel. Appl Environ Microbiol. 85(14):e00739-19. 10.1128/AEM.00739-19
Abdelshafy, A.M., Younis, H.A., Osman, A.I., Hussein, S.M., El-Ela, A.S.A., Mahmoud, E.A., Elsherbiny, O., and Rashwan, A.K. 2025. Recent advances in detection and control strategies for foodborne bacteria in raw and ready-to-eat fruits and vegetables. Food Front. fft2.541. Advance online publication. 10.1002/fft2.541
Aboud, S.A., Altemimi, A.B., Al-HiIphy, A.R.S., Yi-Chen, L., and Cacciola, F. 2019. A comprehensive review on infrared heating applications in food processing. Molecules. 24(22):4125. 10.3390/molecules24224125
Acuña, L., Morero, R.D., and Bellomio, A. 2011. Development of wide-spectrum hybrid bacteriocins for food biopreservation. Food Bioproc Technol. 4(6):1029–1049. 10.1007/s11947-010-0465-7
Alirezalu, K., Hesari, J., Eskandari, M.H., Valizadeh, H., and Sirousazar, M. 2017. Effect of green tea, stinging nettle and olive leaves extracts on the quality and shelf life stability of Frankfurter type sausage: effect of plant extracts in Frankfurter sausage. J Food Proc Preserv. 41(5):e13100. 10.1111/jfpp.13100
Alirezalu, K., Munekata, P.E.S., Parniakov, O., Barba, F.J., Witt, J., Toepfl, S., Wiktor, A., and Lorenzo, J.M. 2020a. Pulsed electric field and mild heating for milk processing: a review on recent advances. J Sci Food Agri. 100(1):16–24. 10.1002/jsfa.9942
Alirezalu, K., Pateiro, M., Yaghoubi, M., Alirezalu, A., Peighambardoust, S.H., and Lorenzo, J.M. 2020b. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci Technol. 100:292–306. 10.1016/j.tifs.2020.04.010
Alkanan, Z.T., Altemimi, A.B., Al-Hilphy, A.R.S., Watson, D.G., and Pratap-Singh, A. 2021. Ohmic heating in the food industry: developments in concepts and applications during 2013–2020. Appl Sci. 11(6):2507. 10.3390/app11062507
Ałtyn, I., and Twarużek, M. 2020. Mycotoxin contamination concerns of herbs and medicinal plants. Toxins. 12(3):182. 10.3390/toxins12030182
André, S., Vallaeys, T., and Planchon, S. 2017. Spore-forming bacteria responsible for food spoilage. Res Microbiol. 168(4):379–387. 10.1016/j.resmic.2016.10.003
Arun, K.B., Anoopkumar, A.N., Sindhu, R., Binod, P., Aneesh, E.M., Madhavan, A., and Awasthi, M.K. 2023. Synthetic biology for sustainable food ingredients production: recent trends. Syst Microbiol Biomanuf. 3(1):137–149. 10.1007/s43393-022-00150-3
Ashrafudoulla, Md., Ulrich, M.S.I., Toushik, S.H., Nahar, S., Roy, P.K., Mizan, F.R., Park, S.H., and Ha, S.-D. 2023. Challenges and opportunities of non-conventional technologies concerning food safety. World Poult Sci J. 79(1):3–26. 10.1080/00439339.2023.2163044
Aslam, B., Arshad, M.I., Aslam, M.A., Muzammil, S., Siddique, A.B., Yasmeen, N., Khurshid, M., Rasool, M., Ahmad, M., Rasool, M.H., Fahim, M., Hussain, R., Xia, X., and Baloch, Z. 2021a. Bacteriophage proteome: insights and potentials of an alternate to antibiotics. Infect Dis Ther. 10(3):1171–1193. 10.1007/s40121-021-00446-2
Aslam, B., Khurshid, M., Arshad, M.I., Muzammil, S., Rasool, M., Yasmeen, N., Shah, T., Chaudhry, T.H., Rasool, M.H., Shahid, A., Xueshan, X., and Baloch, Z. 2021b. Antibiotic resistance: one health one world outlook. Front Cell Infect Microbiol. 11:771510. 10.3389/fcimb.2021.771510
Atik, A., and Gumus, T. 2021. The effect of different doses of UV-C treatment on microbiological quality of bovine milk. Food Sci Technol (LWT). 136:110322. 10.1016/j.lwt.2020.110322
Awad, A.M., Kumar, P., Ismail-Fitry, M.R., Jusoh, S., Ab Aziz, M.F., and Sazili, A.Q. 2022. Overview of plant extracts as natural preservatives in meat. J Food Proc Preserv. 46(8):e16796. 10.1111/jfpp.16796
Balaban, M., Koç, C., Sar, T., and Akbas, M.Y. 2021. Antibiofilm effects of pomegranate peel extracts against B. cereus, B. subtilis, and E. faecalis. Int J Food Sci Technol. 56(10):4915–4924. 10.1111/ijfs.15221
Balaban, M., Koç, C., Sar, T., and Akbas, M.Y. 2022. Screening for bioactive compound rich pomegranate peel extracts and their antimicrobial activities: extraction methods for increased antibacterial and antifungal properties. Johnson Matthey Technol Rev. 66(1):81–89. 10.1595/205651322X16104587974507
Balandin, S.V., Sheremeteva, E.V., and Ovchinnikova, T.V. 2019. Pediocin-like antimicrobial peptides of bacteria. Biochemistry (Moscow). 84(5):464–478. 10.1134/S000629791905002X
Balasubramanian, A., Lee, D.S., Chikindas, M.L., and Yam, K.L. 2011. Effect of Nisin’s controlled release on microbial growth as modeled for Micrococcus luteus. Probiotics Antimicro Proteins. 3(2):113–118. 10.1007/s12602-011-9073-8
Bandyopadhyay, N.C., More, V., Tripathi, J., and Gautam, S. 2020. Gamma radiation treatment to ensure microbial safety of ready to bake (RTB) vegetable toppings/ fillers and retain their nutritional qualities during cold storage. Radiat Phys Chem. 176:108939. 10.1016/j.radphyschem.2020.108939
Barashkova, A.S., and Rogozhin, E.A. 2020. Isolation of antimicrobial peptides from different plant sources: does a general extraction method exist? Plant Methods. 16(1):143. 10.1186/s13007-020-00687-1
Bawa, D. 2016. Inactivation of Thermodynamic Sporeformers and Spores in Skim Milk by Continuous Ultrasonication and Hydrodynamic Cavitation in Combination with Thermal Treatments. Electronic Theses and Dissertations, South Dakota State University. https://openprairie.sdstate.edu/etd/1040 (Accessed on: 12 January 2025).
Bayoumi, M.A., and Griffiths, M.W. 2012. In vitro inhibition of expression of virulence genes responsible for colonization and systemic spread of enteric pathogens using Bifidobacterium bifidum secreted molecules. Int J Food Microbiol. 156(3):255–263. 10.1016/j.ijfoodmicro.2012.03.034
Becerril, R., Nerín, C., and Silva, F. 2020. Encapsulation systems for antimicrobial food packaging components: an update. Molecules. 25(5):1134. 10.3390/molecules25051134
Beekwilder, J., Wolswinkel, R., Jonker, H., Hall, R., De Vos, C.H.R., and Bovy, A. 2006. Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol. 72(8):5670–5672. 10.1128/AEM.00609-06
Bevelacqua, J.J., and Javad Mortazavi, S.M. 2020. Can irradiated food have an influence on people’s health? In: Andersen, V. (Ed.) Genetically Modified and Irradiated Food. Controversial Issues: Facts versus Perceptions. Elsevier, Amsterdam, the Netherlands, pp. 243–257. 10.1016/B978-0-12-817240-7.00015-2
Birla, S.L., Wang, S., Tang, J., and Tiwari, G. 2008. Characterization of radio frequency heating of fresh fruits influenced by dielectric properties. J Food Eng. 89(4):390–398. 10.1016/j.jfoodeng.2008.05.021
Biswaro, L.S., Da Costa Sousa, M.G., Rezende, T.M.B., Dias, S.C., and Franco, O.L. 2018. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol. 9:855. 10.3389/fmicb.2018.00855
Bodie, A.R., Wythe, L.A., Dittoe, D.K., Rothrock, M.J., O’Bryan, C.A., and Ricke, S.C. 2024. Alternative additives for organic and natural ready-to-eat meats to control spoilage and maintain shelf life: current perspectives in the United States. Foods 13(3):464. Scopus. 10.3390/foods13030464
Borrajo, P., Pateiro, M., Barba, F.J., Mora, L., Franco, D., Toldrá, F., and Lorenzo, J.M. 2019. Antioxidant and antimicrobial activity of peptides extracted from meat by-products: a review. Food Anal Methods. 12(11):2401–2415. 10.1007/s12161-019-01595-4
Brady, D., Grapputo, A., Romoli, O., and Sandrelli, F. 2019. Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int J Mol Sci. 20(23):5862. 10.3390/ijms20235862
Butz, P., and Tauscher, B. 2002. Emerging technologies: chemical aspects. Food Res Int. 35(2–3):279–284. 10.1016/S0963-9969(01)00197-1
Cao, X., Huang, R., and Chen, H. 2019. Evaluation of food safety and quality parameters for shelf life extension of pulsed light treated strawberries. J Food Sci. 84(6):1494–1500. 10.1111/1750-3841.14613
Cao, Y., and Miao, L. 2023. Consumer perception of clean food labels. Br Food J. 125(2):433–448. 10.1108/BFJ-03-2021-0246
Cao, X., Zhang, M., Mujumdar, A.S., Zhong, Q., and Wang, Z. 2018. Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying. Ultrason Sonochem. 40:333–340. 10.1016/j.ultsonch.2017.06.014
Casaburi, A., Di Martino, V., Ferranti, P., Picariello, L., and Villani, F. 2016. Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control. 59:31–45. 10.1016/j.foodcont.2015.05.016
Castellano, P., Peña, N., Ibarreche, M.P., Carduza, F., Soteras, T., and Vignolo, G. 2018. Antilisterial efficacy of Lactobacillus bacteriocins and organic acids on Frankfurters. Impact on sensory characteristics. J Food Sci Technol. 55(2):689–697. 10.1007/s13197-017-2979-8
Cederberg, C., and Sonesson, U. 2011. Global Food Losses and Food Waste: Extent, Causes and Prevention. Study conducted for the International Congress Save Food! Rome at Interpack Düsseldorf, Germany, 2011 (16–17 May), Gustavsson, J. (Ed.). Food and Agriculture Organization of the United Nations, Rome, Italy.
Cho, W.-I., Yi, J. Y., and Chung, M.-S. 2016. Pasteurization of fermented red pepper paste by ohmic heating. Innov Food Sci Emerg Technol. 34:180–186. 10.1016/j.ifset.2016.01.015
Choi, Y., Lee, S.M., Chun, J., Lee, H.B., and Lee, J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 99(2):381–387. 10.1016/j.foodchem.2005.08.004
Cleveland, J., Montville, T.J., Nes, I.F., and Chikindas, M.L. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol. 71(1):1–20. 10.1016/S0168-1605(01)00560-8
Cordery, A., Rao, A.P., and Ravishankar, S. 2018. Antimicrobial activities of essential oils, plant extracts and their applications in foods—a review. J Agric Environ Sci. 7(2):76–89.
Coronel, P., Simunovic, J., and Sandeep, K.P. 2003. Temperature profiles within milk after heating in a continuous-flow tubular microwave system operating at 915 MHz. J Food Sci. 68(6):1976–1981. 10.1111/j.1365-2621.2003.tb07004.x
Corrales, M., Han, J.H., and Tauscher, B. 2009. Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int J Food Sci Technol. 44(2):425–433. 10.1111/j.1365-2621.2008.01790.x
Dalmoro, A., Naddeo, C., Caputo, S., Lamberti, G., Guadagno, L., d’Amore, M., and Barba, A.A. 2018. On the relevance of thermophysical characterization in the microwave treatment of legumes. Food Funct. 9(3):1816–1828. 10.1039/C7FO01488K
Datta, A.K., and Ni, H. 2002. Infrared and hot-air-assisted microwave heating of foods for control of surface moisture. J Food Eng. 51(4):355–364. 10.1016/S0260-8774(01)00079-6
Davidson, P.M., Critzer, F.J., and Taylor, T.M. 2013. Naturally occurring antimicrobials for minimally processed foods. Annual Rev Food Sci Technol. 4(1):163–190. 10.1146/annurev-food-030212-182535
Davidson, P., and Doan, C. 2020. Natamycin. In P. Michael Davidson, T. Matthew Taylor, Jairus R. D. David (eds.). Antimicrobials in Food. CRC Press, Boca Raton, FL, pp. 339–356.
Deeth, H.C., and Datta, N. 2011. Heat treatment of milk|ultra-high temperature treatment (UHT): heating systems. In: Encyclopedia of Dairy Sciences. Elsevier, Amsterdam, the Netherlands, pp. 699–707. 10.1016/B978-0-12-374407-4.00216-8
Defoirdt, T. 2018. Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol. 26(4):313–328. 10.1016/j.tim.2017.10.005
Delmas, H., and Barthe, L. 2015. Ultrasonic mixing, homogenization, and emulsification in food processing and other applications. In: Power Ultrasonics. Elsevier, Amsterdam, the Netherlands, pp. 757–791. 10.1016/B978-1-78242-028-6.00025-9
Delorme, M.M., Guimarães, J.T., Coutinho, N.M., Balthazar, C.F., Rocha, R.S., Silva, R., Margalho, L.P., Pimentel, T.C., Silva, M.C., Freitas, M.Q., Granato, D., Sant’Ana, A.S., Duart, M.C.K.H., and Cruz, A.G. 2020. Ultraviolet radiation: an interesting technology to preserve quality and safety of milk and dairy foods. Trends Food Sci Technol, 102:146–154. 10.1016/j.tifs.2020.06.001
De Souza Barbosa, M., Todorov, S.D., Ivanova, I., Chobert, J.-M., Haertlé, T., and De Melo Franco, B.D.G. 2015. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol. 46:254–262. 10.1016/j.fm.2014.08.004
De Souza De Azevedo, P.O., Converti, A., Gierus, M., and De Souza Oliveira, R.P. 2019. Application of nisin as biopreservative of pork meat by dipping and spraying methods. Braz J Microbiol. 50(2):523–526. 10.1007/s42770-019-00080-8
Ding, W., Wang, H., and Griffiths, M.W. 2005. Probiotics downregulate flaa σ28 promoter in campylobacter jejuni. J Food Prot. 68(11):2295–2300. 10.4315/0362-028X-68.11.2295
Dinika, I., Verma, D.K., Balia, R., Utama, G.L., and Patel, A.R. 2020. Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: a review of recent trends. Trends Food Sci Technol. 103:57–67. 10.1016/j.tifs.2020.06.017
Dos Santos, L.R., Alía, A., Martin, I., Gottardo, F.M., Rodrigues, L.B., Borges, K.A., Furian, T.Q., and Córdoba, J.J. 2022. Antimicrobial activity of essential oils and natural plant extracts against Listeria monocytogenes in a dry-cured ham-based model. J Sci Food Agric. 102(4):1729–1735. 10.1002/jsfa.11475
Du, L., Jaya Prasad, A., Gänzle, M., and Roopesh, M.S. 2020. Inactivation of Salmonella spp. in wheat flour by 395-nm pulsed light emitting diode (LED) treatment and the related functional and structural changes of gluten. Food Res Int. 127:108716. 10.1016/j.foodres.2019.108716
Dutta, P., and Das, S. 2015. Mammalian antimicrobial peptides: promising therapeutic targets against infection and chronic inflammation. Curr Topics Med Chem. 16(1):99–129. 10.2174/1568026615666150703121819
Dziadek, K., Kopeć, A., Dróżdż, T., Kiełbasa, P., Ostafin, M., Bulski, K., and Oziembłowski, M. 2019. Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. J Food Sci Technol. 56:1184–1191. 10.1007/s13197-019-03581-4
Efenberger-Szmechtyk, M., Nowak, A., and Czyzowska, A. 2021. Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products. Crit Rev Food Sci Nutr. 61(1):149–178. 10.1080/10408398.2020.1722060
Ehlermann, D.A.E. 2016. The early history of food irradiation. Radiat Phy Chem. 129:10–12. 10.1016/j.radphyschem.2016.07.024
El-Beltagi, H.S., Eshak, N.S., Mohamed, H.I., Bendary, E.S.A., and Danial, A.W. 2022. Physical characteristics, mineral content, and antioxidant and antibacterial activities of Punica granatum or Citrus sinensis peel extracts and their applications to improve cake quality. Plants. 11(13):1740. 10.3390/plants11131740
Elechi, J.O.G., Nwiyi, I.U., and Adamu, C.S. 2022. Global food system transformation for resilience. In: Ribeiro-Barros, A.I., Tevera, D.S., Goulao, L.F., and Tivana, L.D. (Eds.) Sustainable Development, Vol. 1. IntechOpen, London, pp. 1-29. 10.5772/intechopen.102749
El-Kholany, E., El-Deeb, A., and Elsheikh, D. 2022. Impact of lemon peel extract utilization on the biological values of Labneh during storage. Egypt J Agric Res. 100(4):555–569. 10.21608/ejar.2022.132702.1240
El-Saber Batiha, G., Hussein, D.E., Algammal, A.M., George, T.T., Jeandet, P., Al-Snafi, A.E., Tiwari, A., Pagnossa, J.P., Lima, C.M., Thorat, N.D., Zahoor, M., El-Esawi, M., Dey, A., Alghamdi, S., Hetta, H.F., and Cruz-Martins, N. 2021. Application of natural antimicrobials in food preservation: recent views. Food Control. 126:108066. 10.1016/j.foodcont.2021.108066
Elshama, S.S. 2020. Synthetic and natural food additives: toxicological hazards and health benefits. Open Acc J Toxicol. 4(4):OAJT.MS.ID.555643. 10.19080/OAJT.2020.04.555643
Fael, H., and Demirel, A.L. 2020. Nisin/polyanion layer-by-layer films exhibiting different mechanisms in antimicrobial efficacy. RSC Adv. 10(17):10329–10337. 10.1039/C9RA10135G
Fellows, P.J. 2017. Dielectric, ohmic and infrared heating. In: Food Processing Technology. Elsevier, Amsterdam, the Netherlands, pp. 813–844. 10.1016/B978-0-08-100522-4.00019-5
Fillâtre, Y., Gray, F.-X., and Roy, C. 2017. Pesticides in essential oils: occurrence and concentration in organic and conventional orange essential oils from eleven geographical origins. Anal Chim Acta. 992:55–66. 10.1016/j.aca.2017.08.039
Fleitas Martínez, O., Cardoso, M.H., Ribeiro, S.M., and Franco, O.L. 2019. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Inf Microbiol. 9:74. 10.3389/fcimb.2019.00074
Food and Agriculture Organization (FAO). 2023. The importance of food safety for food systems transformation. https://www.fao.org/food-systems/news/news-detail/The-Importance-of-Food-Safety-for-Food-Systems-Transformation/en (Accessed: 22 January 2025).
Franzenburg, S., Walter, J., Künzel, S., Wang, J., Baines, J.F., Bosch, T.C.G., and Fraune, S. 2013. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci. 110(39):E3730–E3738. 10.1073/pnas.1304960110
Furlaneto-Maia, L., Ramalho, R., Rocha, K.R., and Furlaneto, M.C. 2020. Antimicrobial activity of enterocins against Listeria sp., and other food spoilage bacteria. Biotechnol Lett. 42(5):797–806. 10.1007/s10529-020-02810-7
Gao, C., Tian, L., Lu, J., and Gong, G. 2024. A novel bioactive antimicrobial film based on polyvinyl alcohol-protocatechuic acid: mechanism and characterization of biofilm inhibition and its application in pork preservation. Food Bioproc Technol. 17(10):3319–3332. 10.1007/s11947-023-03309-5
Garcia-Fuentes, A., Wirtz, S., Vos, E., and Verhagen, H. 2015. Short review of sulphites as food additives. Eur J Nutr Food Safety. 5(2):113–120. 10.9734/EJNFS/2015/11557
Gavahian, M., and Chu, R. 2022. Ohmic heating extraction at different times, temperatures, voltages, and frequencies: a new energy-saving technique for pineapple core valorization. Foods 11(14):2015. 10.3390/foods11142015
Gholami-Shabani, M., Shams-Ghahfarokhi, M., and Razzaghi-Abyaneh, M. 2024. Food microbiology: application of microorganisms in food industry. In: Sajid Arshad, M., and Khalid, W. (Eds.) Health Risks of Food Additives—Recent Developments and Trends in Food Sector. IntechOpen, London. 10.5772/intechopen.109729
Girthie John Britto, C., Dhivahar Sahaya Antony John, A., Jayakumar, A., Selvasekaran, P., Chidambaram, R., and Zheng, H. 2023. Nanotechnology applications for food safety: benefits and risks. In: Nanotechnology Applications for Food Safety and Quality Monitoring. Elsevier, Amsterdam, the Netherlands, pp. 3–30. 10.1016/B978-0-323-85791-8.00021-5
Givi, F., Gholami, M., and Massah, A. 2019. Application of pomegranate peel extract and essential oil as a safe botanical preservative for the control of postharvest decay caused by Penicillium italicum and Penicillium digitatum on ‘Satsuma’ mandarin. J Food Safety. 39(3):e12639. 10.1111/jfs.12639
Gobbetti, M., and Di Cagno, R. 2017. Extra-hard varieties. In: Cheese. Elsevier, Amsterdam, the Netherlands, pp. 809–828. 10.1016/B978-0-12-417012-4.00032-6
Gong, S., Jiao, C., and Guo, L. 2022. Antibacterial mechanism of beetroot (Beta vulgaris) extract against Listeria monocytogenes through apoptosis-like death and its application in cooked pork. Food Sci Technol. (LWT). 165:113711. 10.1016/j.lwt.2022.113711
Guida, V., Ferrari, G., Pataro, G., Chambery, A., Di Maro, A., and Parente, A. 2013. The effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. Food Sci Technol (LWT). 53(2):569–579. 10.1016/j.lwt.2013.04.006
Gunter-Ward, D.M., Patras, A.S., Bhullar, M., Kilonzo-Nthenge, A., Pokharel, B., and Sasges, M. 2018. Efficacy of ultraviolet (UV-C) light in reducing foodborne pathogens and model viruses in skim milk. J Food Proc Preserv. 42(2):e13485. 10.1111/jfpp.13485
Guo, L., McLean, J.S., Yang, Y., Eckert, R., Kaplan, C.W., Kyme, P., Sheikh, O., Varnum, B., Lux, R., Shi, W., and He, X. 2015. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci. 112(24):7569–7574. 10.1073/pnas.1506207112
Guo, L., Wang, Y., Bi, X., Duo, K., Sun, Q., Yun, X., Zhang, Y., Fei, P., and Han, J. 2020. Antimicrobial activity and mechanism of action of the amaranthus tricolor crude extract against Staphylococcus aureus and potential application in cooked meat. Foods 9(3):359. 10.3390/foods9030359
Gut, I.M., Blanke, S.R., and Van Der Donk, W.A. 2011. Mechanism of inhibition of Bacillus anthracis spore outgrowth by the Lantibiotic nisin. ACS Chem Biol. 6(7):744–752. 10.1021/cb1004178
Hashimoto, Y., Otani, Y., Yabunaka, A., Ikeuchi, R., and Yamamoto, K. 2020. Inactivation of Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis by ultrasonic cavitation. Acoust Sci Technol. 41(6):877–884. 10.1250/ast.41.877
Hassan, A.H.A., and Cutter, C.N. 2020. Development and evaluation of pullulan-based composite antimicrobial films (CAF) incorporated with nisin, thymol and lauric arginate to reduce food-borne pathogens associated with muscle foods. Int J Food Microbiol. 320:108519. 10.1016/j.ijfoodmicro.2020.108519
Hassan, A.B., Von Hoersten, D., and Mohamed Ahmed, I.A. 2019. Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chem. 271:142–147. 10.1016/j.foodchem.2018.07.190
Hernández-Aquino, S., Miranda-Romero, L.A., Fujikawa, H., Maldonado-Simán, E.D.J., and Alarcón-Zuñiga, B. 2019. Antibacterial activity of lactic acid bacteria to improve shelf life of raw meat. Biocontrol Sci. 24(4):185–192. 10.4265/bio.24.185
Hernández-Hernández, H.M., Moreno-Vilet, L., and Villanueva-Rodríguez, S.J. 2019. Current status of emerging food processing technologies in Latin America: novel non-thermal processing. Innov Food Sci Emerg Technol. 58:102233. 10.1016/j.ifset.2019.102233
Herrera, J.C.P., Contreras, C.C.B., Legua, F.E.C., Cruz, M.E.C., and Bustos, J.P.Q. 2023. Strategies for microbiological control in food: microbiological control, agronomy and environmental conservation. J Namibian Stud. 33(S3):3205–3215.
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C., and Sanders, M.E. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 11(8):506–514. 10.1038/nrgastro.2014.66
Hosseini, F., Akhavan, H., Maghsoudi, H., Hajimohammadi-Farimani, R., and Balvardi, M. 2019. Effects of a rotational UV-C irradiation system and packaging on the shelf life of fresh pistachio. J Sci Food Agric. 99(11):5229–5238. 10.1002/jsfa.9763
Hou, L., Johnson, J.A., and Wang, S. 2016. Radio frequency heating for postharvest control of pests in agricultural products: a review. Postharvest Biol Technol. 113:106–118. 10.1016/j.postharvbio.2015.11.011
Hradecky, J., Kludska, E., Belkova, B., Wagner, M., and Hajslova, J. 2017. Ohmic heating: a promising technology to reduce furan formation in sterilized vegetable and vegetable/meat baby foods. Innov Food Sci Emerg Technol. 43:1–6. 10.1016/j.ifset.2017.07.018
Hsiao, Y.-T., Chen, B.-Y., Huang, H.-W., and Wang, C.-Y. 2021. Inactivation mechanism of Aspergillus flavus conidia by high hydrostatic pressure. Foodborne Pathog Dis. 18(2):123–130. 10.1089/fpd.2020.2825
Hu, M., Liu, F., Wang, Z., Shao, M., Xu, M., Yang, T., Zhang, R., Zhang, X., and Rao, Z. 2022. Sustainable isomaltulose production in Corynebacterium glutamicum by engineering the thermostability of sucrose isomerase coupled with one-step simplified cell immobilization. Front Microbiol. 13:979079. 10.3389/fmicb.2022.979079
Huan, Y., Kong, Q., Mou, H., and Yi, H. 2020. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 11:582779. 10.3389/fmicb.2020.582779
Huang, H.-W., Hsu, C.-P., and Wang, C.-Y. 2020. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J Food Drug Anal. 28(1):1–13. 10.1016/j.jfda.2019.10.002
Hughes, K.A., Sutherland, I.W., Clark, J., and Jones, M.V. 1998. Bacteriophage and associated polysaccharide depolymerases—novel tools for study of bacterial biofilms. J Appl Microbiol. 85(3):583–590. 10.1046/j.1365-2672.1998.853541.x
Hwang, C.-A., and Fan, X. 2015. Processing, quality and safety of irradiated and high pressure-processed meat and seafood products. In: Siddiqui, M.W., and Rahman, M.S. (Eds.) Minimally Processed Foods. Springer, Cham, Switzerland, pp. 251–278. 10.1007/978-3-319-10677-9_11
Iordache, A.M., Nechita, C., Voica, C., Roba, C., Botoran, O.R., and Ionete, R.E. 2022. Assessing the health risk and the metal content of thirty-four plant essential oils using the ICP-MS technique. Nutrients. 14(12):2363. 10.3390/nu14122363
Jackson-Davis, A., White, S., Kassama, L.S., Coleman, S., Shaw, A., Mendonca, A., Cooper, B., Thomas-Popo, E., Gordon, K., and London, L. 2023. A review of regulatory standards and advances in essential oils as antimicrobials in foods. J Food Prot. 86(2):100025. 10.1016/j.jfp.2022.100025
Jayaprakasha, G.K., Selvi, T., and Sakariah, K.K. 2003. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res Int. 36(2):117–122. 10.1016/S0963-9969(02)00116-3
Jiang, Q., Zhang, M., and Xu, B. 2020. Application of ultrasonic technology in postharvested fruits and vegetables storage: a review. Ultrason Sonochem. 69:105261. 10.1016/j.ultsonch.2020.105261
Jiao, S., Sun, W., Yang, T., Zou, Y., Zhu, X., and Zhao, Y. 2017. Investigation of the feasibility of radio frequency energy for controlling insects in milled rice. Food Bioproc Technol. 10(4):781–788. 10.1007/s11947-017-1865-8
Kachur, K., and Suntres, Z. 2020. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutr. 60(18):3042–3053. 10.1080/10408398.2019.1675585
Kamal, I., Ashfaq, U.A., Hayat, S., Aslam, B., Sarfraz, M.H., Yaseen, H., Rajoka, M.S.R., Shah, A.A., and Khurshid, M. 2023. Prospects of antimicrobial peptides as an alternative to chemical preservatives for food safety. Biotechnol Lett. 45(2):137–162. 10.1007/s10529-022-03328-w
Kareem, A.R., and Razavi, S.H. 2020. Plantaricin bacteriocins: as safe alternative antimicrobial peptides in food preservation—a review. J Food Safety. 40(1):e12735. 10.1111/jfs.12735
Kaur, N., and Singh, A.K. 2016. Ohmic heating: concept and applications—a review. Crit Rev Food Sci Nutr. 56(14):2338–2351. 10.1080/10408398.2013.835303
Khalil, A.S., and Collins, J.J. 2010. Synthetic biology: applications come of age. Nat Rev Genet. 11(5):367–379. 10.1038/nrg2775
Khaliq, A., Chughtai, M.F.J., Mehmood, T., Ahsan, S., Liaqat, A., Nadeem, M., Sameed, N., Saeed, K., Rehman, J.U., and Ali, A. 2021. High-pressure processing; principle, applications, impact, and future prospective. In Sustainable Food Processing and Engineering Challenges. Elsevier, Amsterdam, the Netherlands, pp. 75–108. 10.1016/B978-0-12-822714-5.00003-6
Khara, J.S., Obuobi, S., Wang, Y., Hamilton, M.S., Robertson, B.D., Newton, S.M., Yang, Y.Y., Langford, P.R., and Ee, P.L.R. 2017. Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. Acta Biomaterial. 57:103–114. 10.1016/j.actbio.2017.04.032
Khorshidian, N., Khanniri, E., Mohammadi, M., Mortazavian, A.M., and Yousefi, M. 2021. Antibacterial activity of pediocin and pediocin-producing bacteria against listeria monocytogenes in meat products. Front Microbiol. 12:709959. 10.3389/fmicb.2021.709959
Khouryieh, H.A. 2021. Novel and emerging technologies used by the U.S. food processing industry. Innov Food Sci Emerg Technol. 67:102559. 10.1016/j.ifset.2020.102559
Koné, K.Y., Druon, C., Gnimpieba, E.Z., Delmotte, M., Duquenoy, A., and Laguerre, J.-C. 2013. Power density control in microwave assisted air drying to improve quality of food. J Food Eng. 119(4):750–757. 10.1016/j.jfoodeng.2013.06.044
Kudra, T. 1989. Dielectric drying of particulate materials in a fluidized state. Dry Technol. 7(1):17–34. 10.1080/07373938908916572
Labrie, S.J., Samson, J.E., and Moineau, S. 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 8(5):317–327. 10.1038/nrmicro2315
Langdon, A., Crook, N., and Dantas, G. 2016. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8(1):39. 10.1186/s13073-016-0294-z
Lara, G., Takahashi, C., Nagaya, M., and Uemura, K. 2022. Improving the shelf life stability of vacuum-packed fresh-cut peaches (Prunus persica L.) by radio frequency heating in water. Int J Food Sci Technol. 57(6):3251–3262. 10.1111/ijfs.15193
Lazzaro, B.P., Zasloff, M., and Rolff, J. 2020. Antimicrobial peptides: application informed by evolution. Science. 368(6490):eaau5480. 10.1126/science.aau5480
Lee, S.H., Choi, W., and Jun, S. 2016. Conventional and emerging combination technologies for food processing. Food Eng Rev. 8(4):414–434. 10.1007/s12393-016-9145-3
Lee, S.H., and Jun, S. 2011. Enhancement of sugar release from taro waste using ohmic heating and microwave heating techniques. Trans ASABE. 54(3):1041–1047. 10.13031/2013.37089
Lee, J.H., Oh, M., and Kim, B.S. 2023. Phage biocontrol of zoonotic food-borne pathogen vibrio parahaemolyticus for seafood safety. Food Control. 144:109334. 10.1016/j.foodcont.2022.109334
Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. Int J Food Microbiol. 55(1–3):181–186. 10.1016/S0168-1605(00)00161-6
Leistner, L., and Gould, G.W. 2002. Hurdle Technologies: Combination Treatments for Food Stability, Safety, and Quality. Kluwer Academic, Dordrecht, the Netherlands.
Levy, D.S., and Villavicencio, A.L. 2020. Food irradiation: communication strategies to bridge the gap between scientists and the public. Adv Bridge Eng (ABEN). 51:2046–2055.
Li, X., Cai, M., Wang, L., Niu, F., Yang, D., and Zhang, G. 2019. Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Sci Total Environ. 659:1415–1427. 10.1016/j.scitotenv.2018.12.344
Li, X., and Farid, M. 2016. A review on recent development in non-conventional food sterilization technologies. J Food Eng. 182:33–45. 10.1016/j.jfoodeng.2016.02.026
Li, Y., Zhuang, S., Liu, Y., Zhang, L., Liu, X., Cheng, H., Liu, J., Shu, R., and Luo, Y. 2020. Effect of grape seed extract on quality and microbiota community of container-cultured snakehead (Channa argus) fillets during chilled storage. Food Microbiol. 91:103492. 10.1016/j.fm.2020.103492
Liang, D., Zhang, L., Wang, X., Wang, P., Liao, X., Wu, X., Chen, F., and Hu, X. 2019. Building of pressure-assisted ultra-high temperature system and its inactivation of bacterial spores. Front Microbiol. 10:1275. 10.3389/fmicb.2019.01275
Ling, B., Cheng, T., and Wang, S. 2020. Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: a review. Crit Rev Food Sci Nutr. 60(15):2622–2642. 10.1080/10408398.2019.1651690
Liu, Y., McKeever, L.C., and Malik, N.S.A. 2017. Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens. Front Microbiol. 8, 113. 10.3389/fmicb.2017.00113
Liu, Y., Sameen, D.E., Ahmed, S., Dai, J., and Qin, W. 2021. Antimicrobial peptides and their application in food packaging. Trends Food Sci Technol. 112:471–483. 10.1016/j.tifs.2021.04.019
Lorenzo, J.M., Munekata, P.E., Dominguez, R., Pateiro, M., Saraiva, J.A., and Franco, D. 2018. Main groups of microorganisms of relevance for food safety and stability. In: Innovative Technologies for Food Preservation. Elsevier, Amsterdam, the Netherlands, pp. 53–107. 10.1016/B978-0-12-811031-7.00003-0
Luo, Y., Li, B.-Z., Liu, D., Zhang, L., Chen, Y., Jia, B., Zeng, B.-X., Zhao, H., and Yuan, Y.-J. 2015. Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev. 44(15):5265–5290. 10.1039/C5CS00025D
Lv, X., Wu, Y., Gong, M., Deng, J., Gu, Y., Liu, Y., Li, J., Du, G., Ledesma-Amaro, R., Liu, L., and Chen, J. 2021. Synthetic biology for future food: research progress and future directions. Future Foods. 3:100025. 10.1016/j.fufo.2021.100025
Madhavan, A., Arun, K.B., Alex, D., Anoopkumar, A.N., Emmanual, S., Chaturvedi, P., Varjani, S., Tiwari, A., Kumar, V., Reshmy, R., Awasthi, M.K., Binod, P., Aneesh, E.M., and Sindhu, R. 2023. Microbial production of nutraceuticals: metabolic engineering interventions in phenolic compounds, polyunsaturated fatty acids and carotenoids synthesis. J Food Sci Technol. 60(8):2092–2104. 10.1007/s13197-022-05482-5
Makroo, H.A., Saxena, J., Rastogi, N.K., and Srivastava, B. 2017. Ohmic heating assisted polyphenol oxidase inactivation of watermelon juice: effects of the treatment on pH, lycopene, total phenolic content, and color of the juice. J Food Proc Preserv. 41(6):e13271. 10.1111/jfpp.13271
Manniello, M.D., Moretta, A., Salvia, R., Scieuzo, C., Lucchetti, D., Vogel, H., Sgambato, A., and Falabella, P. 2021. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci. 78(9):4259–4282. 10.1007/s00018-021-03784-z
Maria-Neto, S., De Almeida, K.C., Macedo, M.L.R., and Franco, O.L. 2015. Understanding bacterial resistance to antimicrobial peptides: from the surface to deep inside. Biochim Biophys Acta Biomembranes. 1848(11):3078–3088. 10.1016/j.bbamem.2015.02.017
Maspeke, P.N.S., Salengke, S., Muhidong, J., and Dirpan, A. 2024. A bibliometric analysis of ohmic heating on food processing in the last two decades. Heliyon. 10(20):e39315. 10.1016/j.heliyon.2024.e39315
Mazhar, S., Yasmeen, R., Chaudhry, A., Summia, K., Ibrar, M., Amjad, S., and Ali, E. 2022. Role of microbes in modern food industry. Int J Innov Sci Technol. 4(1):65–77. 10.33411/IJIST/2022040105
Medellin-Peña, M.J., and Griffiths, M.W. 2009. Effect of molecules secreted by Lactobacillus acidophilus strain La-5 on Escherichia coli O157:H7 colonization. Appl Environ Microbiol. 75(4):1165–1172. 10.1128/AEM.01651-08
Meenu, M., Guha, P., and Mishra, S. 2018. Impact of infrared treatment on quality and fungal decontamination of mung bean (Vigna radiata L.) inoculated with Aspergillus spp. J Sci Food Agric. 98(7):2770–2776. 10.1002/jsfa.8773
Mohideen, S.H., and Louis, H. 2021. Insect antimicrobial peptides—therapeutic and agriculture perspective. J Appl Biotechnol Rep. 8(3), 193-202. 10.30491/jabr.2020.236075.1242
Molina-Chavarria, A., Félix-Valenzuela, L., Silva-Campa, E., and Mata-Haro, V. 2020. Evaluation of gamma irradiation for human norovirus inactivation and its effect on strawberry cells. Int J Food Microbiol. 330:108695. 10.1016/j.ijfoodmicro.2020.108695
Mondal, A., Singha, P., Douglass, M., Estes, L., Garren, M., Griffin, L., Kumar, A., and Handa, H. 2021. A synergistic new approach toward enhanced antibacterial efficacy via antimicrobial peptide immobilization on a nitric oxide-releasing surface. ACS Appl Mater Interfaces. 13(37):43892–43903. 10.1021/acsami.1c08921
Moreno-Vilet, L., Hernández-Hernández, H.M., and Villanueva-Rodríguez, S.J. 2018. Current status of emerging food processing technologies in Latin America: novel thermal processing. Innov Food Sci Emerg Technol. 50:196–206. 10.1016/j.ifset.2018.06.013
Mundi, A., Delcenserie, V., Amiri-Jami, M., Moorhead, S., and Griffiths, M.W. 2013. Cell-free preparations of Lactobacillus acidophilus strain La-5 and Bifidobacterium longum strain NCC2705 affect virulence gene expression in Campylobacter jejuni. J Food Prot. 76(10):1740–1746. 10.4315/0362-028X.JFP-13-084
Muthuvelu, K.S., Ethiraj, B., Pramnik, S., Raj, N.K., Venkataraman, S., Rajendran, D.S., Bharathi, P., Palanisamy, E., Narayanan, A.S., Vaidyanathan, V.K., and Muthusamy, S. 2023. Biopreservative technologies of food: an alternative to chemical preservation and recent developments. Food Sci Biotechnol. 32(10):1337–1350. 10.1007/s10068-023-01336-8
Myszka, K., Schmidt, M.T., Majcher, M., Juzwa, W., and Czaczyk, K. 2017. β-caryophyllene-rich pepper essential oils suppress spoilage activity of Pseudomonas fluorescens KM06 in fresh-cut lettuce. Food Sci Technol (LWT). 83:118–126. 10.1016/j.lwt.2017.05.012
Nadon, S., Jantanasakulwong, K., Ratchtanapun, P., Leksawasdi, N., Zubairu, I.K., Gavahian, M., Bangar, S.P., Mousavi Khaneghah, A., and Phimolsiripol, Y. 2025. Application of argon cold plasma on active polybutylene succinate and thermoplastic cassava starch film with Makwaen essential oil to improve shelf-life of pork sausage. Food Pack Shelf Life. 49:101470. 10.1016/j.fpsl.2025.101470
Negri Rodríguez, L.M., Arias, R., Soteras, T., Sancho, A., Pesquero, N., Rossetti, L., Tacca, H., Aimaretti, N., Rojas Cervantes, M.L., and Szerman, N. 2021. Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. Food Sci Technol (LWT). 145:111255. 10.1016/j.lwt.2021.111255
Ngadi, M.O., Latheef, M.B., and Kassama, L. 2012. Emerging technologies for microbial control in food processing. In: Boye, J.I., and Arcand, Y. (Eds.), Green Technologies in Food Production and Processing. Springer, New York, NY, pp. 363–411. 10.1007/978-1-4614-1587-9_14
Nguyen, L.T., Choi, W., Lee, S.H., and Jun, S. 2013. Exploring the heating patterns of multiphase foods in a continuous flow, simultaneous microwave and ohmic combination heater. J Food Eng. 116(1):65–71. 10.1016/j.jfoodeng.2012.11.011
Niakousari, M., Hashemi Gahruie, H., Razmjooei, M., Roohinejad, S., and Greiner, R. 2018. Effects of Innovative processing technologies on microbial targets based on food categories. In: Innovative Technologies for Food Preservation. Elsevier, Amsterdam, the Netherlands, pp. 133–185. 10.1016/B978-0-12-811031-7.00005-4
Nieva, S.G., Jagus, R.J., Agüero, M.V., and Fernandez, M.V. 2022. Fruit and vegetable smoothies preservation with natural antimicrobials for the assurance of safety and quality. Food Sci Technol (LWT). 154:112663. 10.1016/j.lwt.2021.112663
Nowosad, K., Sujka, M., Pankiewicz, U., and Kowalski, R. 2021. The application of PEF technology in food processing and human nutrition. J Food Sci Technol. 58(2):397–411. 10.1007/s13197-020-04512-4
Nwabor, O.F., Onyeaka, H., Miri, T., Obileke, K., Anumudu, C., and Hart, A. 2022. A cold plasma technology for ensuring the microbiological safety and quality of foods. Food Eng Rev. 14(4):535–554. Scopus. 10.1007/s12393-022-09316-0
Nwiyi, I.U., and Elechi, J.O.G. 2022. Evaluation of food safety and nutritional quality of indigenous beverages vended in informal market of Nasarawa State, North-Central Nigeria. Eurasian J Food Sci Technol. 6(2):100–112.
O’Bryan, C.A., Crandall, P.G., Ricke, S.C., and Ndahetuye, J.B. 2015. Lactic acid bacteria (LAB) as antimicrobials in food products. In Handbook of Natural Antimicrobials for Food Safety and Quality. Elsevier, Amsterdam, the Netherlands, pp. 137–151. 10.1016/B978-1-78242-034-7.00007-4
Ojaghian, S., Zhang, L., and Wang, L. 2020. Inhibitory effect of natamycin against carrot white mold caused by Sclerotinia sclerotiorum. Tropic Plant Pathol. 45(4):425–433. 10.1007/s40858-020-00369-2
Olatunde, O.O., Shiekh, K.A., and Benjakul, S. 2021. Pros and cons of cold plasma technology as an alternative non-thermal processing technology in seafood industry. Trends Food Sci Technol. 111:617–627. 10.1016/j.tifs.2021.03.026
Ostermeier, R., Hill, K., Dingis, A., Töpfl, S., and Jäger, H. 2020. Influence of pulsed electric field (PEF) and ultrasound treatment on the frying behavior and quality of potato chips. Innov Food Sci Emerg Technol. 67:102553. 10.1016/j.ifset.2020.102553
Palumbo, J.D., Baker, J.L., and Mahoney, N.E. 2006. Isolation of bacterial antagonists of Aspergillus flavus from almonds. Microb Ecol. 52(1):45–52. 10.1007/s00248-006-9096-y
Pandey, H., Kumar, V., and Roy, B.K. 2014. Assessment of genotoxicity of some common food preservatives using Allium cepa L. as a test plant. Toxicol Rep. 1:300–308. 10.1016/j.toxrep.2014.06.002
Papenfort, K., and Bassler, B.L. 2016. Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol. 14(9):576–588. 10.1038/nrmicro.2016.89
Park, S.-I., Daeschel, M.A., and Zhao, Y. 2004. Functional properties of antimicrobial lysozyme-chitosan composite films. J Food Sci. 69(8):M215-M221. 10.1111/j.1365-2621.2004.tb09890.x
Patel, J., Sharma, M., Millner, P., Calaway, T., and Singh, M. 2011. Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis. 8(4):541–546. 10.1089/fpd.2010.0734
Pereira, R.N., and Vicente, A.A. 2010. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res Int. 43:1936–1943.
Pérez-Baltar, A., Serrano, A., Medina, M., and Montiel, R. 2021. Effect of high-pressure processing on the inactivation and the relative gene transcription patterns of Listeria monocytogenes in dry-cured ham. Food Sci Technol (LWT). 139:110555. 10.1016/j.lwt.2020.110555
Petrus, R.R., Joseph Churey, J., and William Worobo, R. 2020. High-pressure processing of apple juice: the most effective parameters to inactivate pathogens of reference. Br Food J. 122(12):3969–3979. 10.1108/BFJ-03-2020-0178
Pilevar, Z., Hosseini, H., Beikzadeh, S., Khanniri, E., and Alizadeh, A.M. 2020. Application of bacteriocins in meat and meat products: an update. Curr Nutr Food Sci. 16(2):120–133. 10.2174/1573401314666181001115605
Pinto, L., Tapia-Rodríguez, M.R., Baruzzi, F., and Ayala-Zavala, J.F. 2023. Plant antimicrobials for food quality and safety: recent views and future challenges. Foods. 12(12):2315. 10.3390/foods12122315
Plaskova, A., and Mlcek, J. 2023. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 10:1118761. 10.3389/fnut.2023.1118761
Rai, M., Pandit, R., Gaikwad, S., and Kövics, G. 2016. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J Food Sci Technol. 53(9):3381–3394. 10.1007/s13197-016-2318-5
Ramaswamy, R., Krishnamurthy, K., and Jun, S. 2012. Microbial decontamination of food by infrared (IR) heating. In: Microbial Decontamination in the Food Industry. Elsevier, Amsterdam, the Netherlands, pp. 450–471. 10.1533/9780857095756.2.450
Ramos, G.L.P.A., Esper, L.M.R., and Gonzalez, A.G.M. 2024. A review on the application of UV-C treatment on food and food surfaces: association with food microbiology, predictive microbiology and quantitative microbial risk assessment. Int J Food Sci Technol. 59(3):1187–1196. Scopus. 10.1111/ijfs.16880
Rastogi, N.K. 2011. Opportunities and challenges in application of ultrasound in food processing. Crit Rev Food Sci Nutr. 51(8):705–722. 10.1080/10408391003770583
Rathod, N.B., Kulawik, P., Ozogul, F., Regenstein, J.M., and Ozogul, Y. 2021. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci Technol. 116:733–748. 10.1016/j.tifs.2021.08.023
Ravikumar, M., Suthar, H., Desai, C., and Gowda, S.A.J. 2017. Ultrasonication: an advanced technology for food preservation. Int J Pure Appl Biosci. 5(6):363–371. 10.18782/2320-7051.5481
Raybaudi-Massilia, R.M., Mosqueda-Melgar, J., Soliva-Fortuny, R., and Martín-Belloso, O. 2009. Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Comp Rev Food Sci Food Safety. 8(3):157–180. 10.1111/j.1541-4337.2009.00076.x
Richardson, P. (Ed.). 2001. Thermal Technologies in Food Processing. CRC Press, Boca Raton, FL.
Rifna, E.J., Singh, S.K., Chakraborty, S., and Dwivedi, M. 2019. Effect of thermal and non-thermal techniques for microbial safety in food powder: recent advances. Food Res Int. 126:108654. 10.1016/j.foodres.2019.108654
Rinaldi, M., Littardi, P., Paciulli, M., Ganino, T., Cocconi, E., Barbanti, D., Rodolfi, M., Aldini, A., and Chiavaro, E. 2020. Impact of ohmic heating and high pressure processing on qualitative attributes of ohmic-treated peach cubes in syrup. Foods. 9(8):1093. 10.3390/foods9081093
Roselli, M., Finamore, A., Garaguso, I., Britti, M.S., and Mengheri, E. 2003. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr. 133(12):4077–4082. 10.1093/jn/133.12.4077
Rúa, J., Del Valle, P., De Arriaga, D., Fernández-Álvarez, L., and García-Armesto, M.R. 2019. Combination of carvacrol and thymol: antimicrobial activity against Staphylococcus aureus and antioxidant activity. Foodborne Pathog Dis. 16(9):622–629. 10.1089/fpd.2018.2594
Sacilik, K., and Colak, A. 2010. Determination of dielectric properties of corn seeds from 1 to 100 MHz. Powder Technol. 203(2):365–370. 10.1016/j.powtec.2010.05.031
Sakai, N., and Hanzawa, T. 1994. Applications and advances in far-infrared heating in Japan. Trends Food Sci Technol. 5(11):357–362. 10.1016/0924-2244(94)90213-5
Sangsila, A., Faucet-Marquis, V., Pfohl-Leszkowicz, A., and Itsaranuwat, P. 2016. Detoxification of zearalenone by Lactobacillus pentosus strains. Food Control. 62:187–192. 10.1016/j.foodcont.2015.10.031
Santiesteban-López, N.A., Gómez-Salazar, J.A., Santos, E.M., Campagnol, P.C.B., Teixeira, A., Lorenzo, J.M., Sosa-Morales, M.E., and Domínguez, R. 2022. Natural antimicrobials: a clean label strategy to improve the shelf life and safety of reformulated meat products. Foods. 11(17):2613. 10.3390/foods11172613
Sar, T., and Akbas, M.Y. 2023. Antimicrobial activities of olive oil mill wastewater extracts against selected microorganisms. Sustainability. 15(10):8179. 10.3390/su15108179
Sar, T., Kiraz, P., Braho, V., Harirchi, S., and Akbas, M.Y. 2023. Novel perspectives on food-based natural antimicrobials: a review of recent findings published since 2020. Microorganisms. 11(9):2234. 10.3390/microorganisms11092234
Sarıkaya, R., and Çakır, Ş. 2005. Genotoxicity testing of four food preservatives and their combinations in the Drosophila wing spot test. Environ Toxicol Pharmacol. 20(3):424–430. 10.1016/j.etap.2005.05.002
Saxena, J., Makroo, H.A., and Srivastava, B. 2016. Optimization of time-electric field combination for PPO inactivation in sugarcane juice by ohmic heating and its shelf life assessment. Food Sci Technol (LWT). 71:329–338. 10.1016/j.lwt.2016.04.015
Sharma, M., Ryu, J.-H., and Beuchat, L.R. 2005. Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J Appl Microbiol. 99(3):449–459. 10.1111/j.1365-2672.2005.02659.x
Shi, X., Wang, X., Hou, X., Tian, Q., and Hui, M. 2022. Gene mining and flavour metabolism analyses of Wickerhamomyces anomalus Y-1 isolated from a Chinese liquor fermentation starter. Front Microbiol. 13:891387. 10.3389/fmicb.2022.891387
Shin, J.-Y., Kim, S.-J., Kim, D.-K., and Kang, D.-H. 2016. Fundamental characteristics of deep-UV light-emitting diodes and their application to control foodborne pathogens. Appl Environ Microbiol. 82(1):2–10. 10.1128/AEM.01186-15
Silveira, R.F., Roque-Borda, C.A., and Vicente, E.F. 2021. Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: an overview. Animal Nutr. 7(3):896–904. 10.1016/j.aninu.2021.01.004
Singh, S., and Shalini, R. 2016. Effect of hurdle technology in food preservation: a review. Crit Rev Food Sci Nutr. 56(4):641–649. 10.1080/10408398.2012.761594
Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V.K., and Rather, I.A. 2017. Application of nanotechnology in food science: perception and overview. Front Microbiol. 8:1501. 10.3389/fmicb.2017.01501
Sirohi, R., Tarafdar, A., Kumar Gaur, V., Singh, S., Sindhu, R., Rajasekharan, R., Madhavan, A., Binod, P., Kumar, S., and Pandey, A. 2021. Technologies for disinfection of food grains: advances and way forward. Food Res Int. 145:110396. 10.1016/j.foodres.2021.110396
Smith, A. 2020. Food preservation through the ages: a historical perspective. Food Hist J. 15(3):189–205.
Soisungwan, S., Khampakool, A., You, S., and Park, S.H. 2020. Ohmic cooking of instant rice cake soup: energy efficiency and textural qualities. Food Sci Biotechnol. 29:641–649. 10.1007/s10068-019-00706-5
Soltani, S., Hammami, R., Cotter, P.D., Rebuffat, S., Said, L.B., Gaudreau, H., Bédard, F., Biron, E., Drider, D., and Fliss, I. 2021. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev. 45(1):fuaa039. 10.1093/femsre/fuaa039
Song, J., Huang, S., Ma, P., Zhang, B., Jia, B., and Zhang, W. 2020. Improving NK1R-targeted gene delivery of stearyl-antimicrobial peptide CAMEL by conjugating it with substance P. Bioorg Med Chem Lett. 30(16):127353. 10.1016/j.bmcl.2020.127353
Song, A.A.-L., In, L.L.A., Lim, S.H.E., and Rahim, R.A. 2017. A review on Lactococcus lactis: from food to factory. Microb Cell Fact (MCF). 16(1):55. 10.1186/s12934-017-0669-x
Spricigo, D.A., Bardina, C., Cortés, P., and Llagostera, M. 2013. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int J Food Microbiol. 165(2):169–174. 10.1016/j.ijfoodmicro.2013.05.009
Starek, A., Pawłat, J., Chudzik, B., Kwiatkowski, M., Terebun, P., Sagan, A., and Andrejko, D. 2019. Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage. Sci Rep. 9(1):8407. 10.1038/s41598-019-44946-1
Sun, M.-C., Hu, Z.-Y., Li, D.-D., Chen, Y.-X., Xi, J.-H., and Zhao, C.-H. 2022. Application of the Reuterin system as food preservative or health-promoting agent: a critical review. Foods. 11(24):4000. 10.3390/foods11244000
Sun, Y., Zhang, C., and Liew, K.M. 2012. Higher-order constitutive relationship for microtubules based on the higher-order cauchy-born rule. Proced Eng. 31:973–978. 10.1016/j.proeng.2012.01.1129
Taheri, S., Brodie, G., and Gupta, D. 2020. Fluidisation of lentil seeds during microwave drying and disinfection could prevent detrimental impacts on their chemical and biochemical characteristics. Food Sci Technol (LWT). 129:109534. 10.1016/j.lwt.2020.109534
Tamkutė, L., Gil, B.M., Carballido, J.R., Pukalskienė, M., and Venskutonis, P.R. 2019. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Res Int. 120:38–51. 10.1016/j.foodres.2019.02.025
Thapa, S.B., Pandey, R.P., Park, Y.I., and Sohng, J.K. 2019. Biotechnological advances in resveratrol production and its chemical diversity. Molecules. 24(14):2571. 10.3390/molecules24142571
Tomat, D., Mercanti, D., Balagué, C., and Quiberoni, A. 2013. Phage biocontrol of enteropathogenic and Shiga toxin-producing Escherichia coli during milk fermentation. Lett Appl Microbiol. 57(1):3–10. 10.1111/lam.12074
Torrecilla, J.S., Otero, L., and Sanz, P.D. 2005. Artificial neural networks: a promising tool to design and optimize high-pressure food processes. J Food Eng. 69(3):299–306. 10.1016/j.jfoodeng.2004.08.020
Torres, M.D.T., Sothiselvam, S., Lu, T.K., and De La Fuente-Nunez, C. 2019. Peptide design principles for antimicrobial applications. J Mol Biol. 431(18):3547–3567. 10.1016/j.jmb.2018.12.015
Tripathi, J.K., Pal, S., Awasthi, B., Kumar, A., Tandon, A., Mitra, K., Chattopadhyay, N., and Ghosh, J.K. 2015. Variants of self-assembling peptide, KLD-12 that show both rapid fracture healing and antimicrobial properties. Biomaterials. 56:92–103. 10.1016/j.biomaterials.2015.03.046
Turgut, Y., Turgut, S.S., and Karacabey, E. 2021. Use of ohmic heating as an alternative method for cooking pasta. J Sci Food Agric. 101(13):5529–5540. 10.1002/jsfa.11203
Vaishnav, S., Saraf, A., Roy, V., and Kukreja, A. 2024. A comprehensive review of physical techniques for food preservation. Spect Emerg Sci. 4(1):26–32. 10.55878/SES2024-4-1-5
Vale, P.F., McNally, L., Doeschl-Wilson, A., King, K.C., Popat, R., Domingo-Sananes, M.R., Allen, J.E., Soares, M.P., and Kümmerli, R. 2016. Beyond killing: can we find new ways to manage infection? Evol Med Public Health. 2016(1):148–157. 10.1093/emph/eow012
Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., and Bezirtzoglou, E. 2021. Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms. 9(10):2041. 10.3390/microorganisms9102041
Varghese, K.S., Pandey, M.C., Radhakrishna, K., and Bawa, A.S. 2014. Technology, applications and modelling of ohmic heating: a review. J Food Sci Technol. 51(10):2304–2317. 10.1007/s13197-012-0710-3
Vikram, A., Callahan, M.T., Woolston, J.W., Sharma, M., and Sulakvelidze, A. 2022. Phage biocontrol for reducing bacterial foodborne pathogens in produce and other foods. Curr Opinion Biotechnol. 78:102805. 10.1016/j.copbio.2022.102805
Villalobos-Delgado, L.H., Nevárez-Moorillon, G.V., Caro, I., Quinto, E.J., and Mateo, J. 2019. Natural antimicrobial agents to improve foods shelf life. In: Food Quality and Shelf Life. Elsevier, Amsterdam, the Netherlands, pp. 125–157. 10.1016/B978-0-12-817190-5.00004-5
Wang, B., Khir, R., Pan, Z., El-Mashad, H., Atungulu, G.G., Ma, H., Mchugh, T.H., Qu, W., and Wu, B. 2014. Effective disinfection of rough rice using infrared radiation heating. J Food Protec. 77(9):1538–1545. 10.4315/0362-028X.JFP-14-020
Wang, H., and Sun, H. 2020. Assessment of different antimicrobials to inhibit the growth of Zygosaccharomyces rouxii cocktail in concentrated apple juice. Food Microbiol. 91:103549. 10.1016/j.fm.2020.103549
Wang, L., and Teplitski, M. 2023. Microbiological food safety considerations in shelf-life extension of fresh fruits and vegetables. Curr Opinion Biotechnol. 80:102895. 10.1016/j.copbio.2023.102895
Wang, Y., Wig, T.D., Tang, J., and Hallberg, L.M. 2003. Sterilization of foodstuffs using radio frequency heating. J Food Sci. 68(2):539–544. 10.1111/j.1365-2621.2003.tb05708.x
Wang, S., Zhang, J., Wang, Y., Zhu, Q., Wang, X., and Luan, D. 2023. Effects of microwave pasteurization on the quality and shelf-life of low-sodium and intermediate-moisture pacific saury (Cololabis saira). Foods. 12(10):2000. 10.3390/foods12102000
Wang, L., Zhang, C., Zhang, J., Rao, Z., Xu, X., Mao, Z., and Chen, X. 2021. Epsilon-poly-L-lysine: recent advances in biomanufacturing and applications. Front Bioeng Biotechnol. 9:748976. 10.3389/fbioe.2021.748976
Winkler, C., Frick, B., Schroecksnadel, K., Schennach, H., and Fuchs, D. 2006. Food preservatives sodium sulfite and sorbic acid suppress mitogen-stimulated peripheral blood mononuclear cells. Food Chem Toxicol. 44(12):2003–2007. 10.1016/j.fct.2006.06.019
Woo, H., Beck, S., Boczek, L., Carlson, K., Brinkman, N., Linden, K., Lawal, O., Hayes, S., and Ryu, H. 2019. Efficacy of inactivation of human enteroviruses by dual-wavelength germicidal ultraviolet (UV-C) light emitting diodes (LEDs). Water. 11(6):1131. 10.3390/w11061131
World Food Programme (WFP). 2025. Food systems. https://www.wfp.org/food-systems#:~:text=Food%20systems%20are%20the%20networks,key%20to%20reaching%20zero%20hunger
World Health Organization (WHO). 2021. Food safety and quality: a global overview. WHO. https://www.who.int/foodsafety/publications/fs_management/en/
Wu, H., Moser, C., Wang, H.-Z., Høiby, N., and Song, Z.-J. 2015. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 7(1):1–7. 10.1038/ijos.2014.65
Wu, M., Tian, L., Fu, J., Liao, S., Li, H., Gai, Z., and Gong, G. 2022. Antibacterial mechanism of protocatechuic acid against Yersinia enterocolitica and its application in pork. Food Control. 133:108573. 10.1016/j.foodcont.2021.108573
Wu, Y., Zhou, L., Lu, F., Bie, X., Zhao, H., Zhang, C., Lu, Z., and Lu, Y. 2019. Discovery of a novel antimicrobial Lipopeptide, Brevibacillin V, from Brevibacillus laterosporus fmb70 and its application on the preservation of skim milk. J Agric Food Chem. 67(45):12452–12460. 10.1021/acs.jafc.9b04113
Xia, Y., Zeng, Z., López Contreras, A., and Cui, C. 2023. Editorial: innovative microbial technologies for future and sustainable food science. Front Microbiol. 14:1215775. 10.3389/fmicb.2023.1215775
Xu, M.M., Kaur, M., Pillidge, C.J., and Torley, P.J. 2022. Microbial biopreservatives for controlling the spoilage of beef and lamb meat: their application and effects on meat quality. Crit Rev Food Sci Nutr. 62(17):4571–4592. 10.1080/10408398.2021.1877108
Xu, K., Zhao, X., Tan, Y., Wu, J., Cai, Y., Zhou, J., and Wang, X. 2023. A systematical review on antimicrobial peptides and their food applications. Biomater Adv. 155:213684. Scopus. 10.1016/j.bioadv.2023.213684
Yamamoto, K. 2017. Food processing by high hydrostatic pressure. Biosci Biotechnol Biochem. 81(4):672–679. 10.1080/09168451.2017.1281723
Yan, J., Guo, Z., and Xie, J. 2024. A critical analysis of the opportunities and challenges of phage application in seafood quality control. Foods. 13(20):3282. Scopus. 10.3390/foods13203282
Yang, X., Huang, E., Yuan, C., Zhang, L., and Yousef, A.E. 2016. Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant Gram-positive bacteria. Appl Environ Microbiol. 82(9):2763–2772. 10.1128/AEM.00315-16
Yang, P., Rao, L., Zhao, L., Wu, X., Wang, Y., and Liao, X. 2021. High pressure processing combined with selected hurdles: enhancement in the inactivation of vegetative microorganisms. Comp Rev Food Sci Food Safety. 20(2):1800–1828. 10.1111/1541-4337.12724
Yang, S., Sadekuzzaman, M., and Ha, S.-D. 2017. Reduction of Listeria monocytogenes on chicken breasts by combined treatment with UV-C light and bacteriophage ListShield. Food Sci Technol (LWT). 86:193–200. 10.1016/j.lwt.2017.07.060
Yang, C., Zhao, Y., Tang, Y., Yang, R., Yan, W., and Zhao, W. 2018. Radio frequency heating as a disinfestation method against Corcyra cephalonica and its effect on properties of milled rice. J Stored Prod Res. 77:112–121. 10.1016/j.jspr.2018.04.004
Ye, J., Hong, T., Wu, Y., Wu, L., Liao, Y., Zhu, H., Yang, Y., and Huang, K. 2017. Model stirrer based on a multi-material turntable for microwave processing materials. Materials. 10(2):95. 10.3390/ma10020095
Yoon, J.W., and Kang, SS. 2020. In Vitro Antibiofilm and Anti-Inflammatory Properties of Bacteriocins Produced by Pediococcus acidilactici Against Enterococcus faecalis. Foodborne Pathog Dis. 17(12):764–771. 10.1089/fpd.2020.2804
Yousef, A.E., and Abdelhamid, A.G. 2019. Behavior of microorganisms in food: growth, survival, and death. In: Doyle, M.P., Diez-Gonzalez, F., and Hill, C. (Eds.) Food Microbiology. ASM Press, Washington, DC, pp. 3–21. 10.1128/9781555819972.ch1
Yuan, S., Li, C., Zhang, Y., Yu, H., Xie, Y., Guo, Y., and Yao, W. 2021. Ultrasound as an emerging technology for the elimination of chemical contaminants in food: a review. Trends Food Sci Technol. 109:374–385. 10.1016/j.tifs.2021.01.048
Zaki, N.L., Abd-Elhak, N.A., and Abd El-Rahman, H.S.M. 2022. The utilization of yellow and red onion peels and their extracts as antioxidant and antimicrobial in preservation of beef burger during storage. Am J Food Sci Technol. 10(1):1–9. 10.12691/ajfst-10-1-1
Zhai, Y., Tian, J., Ping, R., Xiu, H., Xiang, Q., Shen, R., and Wang, Z. 2021. Effects of ultraviolet-C light-emitting diodes at 275 nm on inactivation of Alicyclobacillus acidoterrestris vegetative cells and its spores as well as the quality attributes of orange juice. Food Sci Technol Int. 27(4):334–343. 10.1177/1082013220957529
Zheng, L., and Sun, D.-W. 2006. Innovative applications of power ultrasound during food freezing processes—a review. Trends Food Sci Technol. 17(1):16–23. 10.1016/j.tifs.2005.08.010
Zheng, A., Zhang, L., and Wang, S. 2017. Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains. Int J Food Microbiol. 249:27–34. 10.1016/j.ijfoodmicro.2017.02.017
Zhu, Y., Li, C., Cui, H., and Lin, L. 2019. Antimicrobial mechanism of pulsed light for the control of Escherichia coli O157:H7 and its application in carrot juice. Food Control. 106:106751. 10.1016/j.foodcont.2019.106751